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ABSTRACT

Encryption is a well established technology for protecting sensi-
Encryption is a well established technology for protecting sensi- Ve data [7] [22] [24]. Unfortunately, the integration of existing
tive data. However, once encrypted, data can no longer be eas"yencryptlon technlques. with database s;_/stems causes undesirable
queried aside from exact matches. We present an order—preservingfe_rf_ormance_ degradation. For example, if a column of a table con-
encryption scheme for numeric data that allows any comparison op-1@ining sensitive information is encrypted, and is used in a query
eration to be directly applied on encrypted data. Query results pro- predicate with a comparison operator, an entire table scan would

duced are sound (no false hits) and complete (no false drops). Ourbe ngeded o gvaluate the query. The reason is that the current en-
ryption techniques do not preserve order and therefore database

scheme handles updates gracefully and new values can be addeﬁ !
indices such as B-tree can no longer be used. Thus the query exe-

s‘cution over encrypted databases can become unacceptably slow.
We presentan encryption technique called OPES (Order Preserv-
ing Encryption Scheme) that allows comparison operations to be

without requiring changes in the encryption of other values. It al-
lows standard database indexes to be built over encrypted table
and can easily be integrated with existing database systems. The
proposed scheme has been designed to be deployed in applicatio

environments in which the intruder can get access to the encryptedireéctly applied on encrypted data, without decrypting the operands.

database, but does not have prior domain information such as the
distribution of values and cannot encrypt or decrypt arbitrary val-
ues of his choice. The encryption is robust against estimation of the
true value in such environments.

T

hus, equality and range queries as well as the MAX, MIN, and
COUNT queries can be directly processed over encrypted data.
Similarly, GROUP BY and ORDER BY operations can also be ap-
plied. Only when applying SUM or AVG to a group do the values

need to be decrypted. OPES is also endowed with the following

1. INTRODUCTION

Database systems typically offer access control as the means to
restrict access to sensitive data. This mechanism protects the pri-
vacy of sensitive information provided data is accessed using the in-
tended database system interfaces. However, access control, while
important and necessary, is often insufficient. Attacks upon com-
puter systems have shown that information can be compromised
if an unauthorized user simply gains access to the raw database

files, bypassing the database access control mechanism altogether.

For instance, a recent article published in the Toronto Star [14] de-
scribes an incident where a disk containing the records of several
hundred bank customers was being auctioned on eBay. The bank
had inadvertently sold the disk to the eBay re-seller as used equip-
ment without deleting its contents. Drawing upon privacy legisla-
tions and guidelines worldwide, Hippocratic databases also identify

properties:

e The results of query processing over data encrypted using
OPES are exact. They neither contain any false positives nor
miss any answer tuple. This feature of OPES sharply differ-
entiates it from schemes such as [13] that produce a superset
of answer, necessitating filtering of extraneous tuples in a
rather expensive and complex post-processing step.

e OPES handles updates gracefully. A value in a column can
be modified or a new value can be inserted in a column with-
out requiring changes in the encryption of other values.

e OPES can easily be integrated with existing database sys-
tems as it has been designed to work with the existing index-
ing structures such as B-trees. The fact that the database is
encrypted can be made transparent to the applications.

the protection of personal data from unauthorized acquisition as a Measurements from an implementation of OPES in DB2 show that

vital requirement [1].

the time and space overhead of OPES are reasonable for it to be

deployed in real systems.

1.1 Estimation Exposure
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When dealing with sensitive numeric data, an adversary does
not have to determine the exact data vatueorresponding to an
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column statistics, as well as values written to recovery logs.

Client Application . e >
. - . . Otherwise, an adversary may be able to use this information
SQL queries with Tuples with to guess data distributions.
plaintext constants | plaintext results
Trusted database server 1.3 Pedagogical Assumptions and Notations
: The focus of this paper is on developing order-preserving en-
Rewrite Decrypt : - : :
Replace query Convert cryption techniques for numeric values and assumes conventional
constants with query results enerypted encryption [22] [24] for other data types as well as for encrypting
encrypted l T results into information such as schema names and metadata. We will some-
constants Compile query and plaintext time refer to unencrypted data values as plaintext. Similarly, en-
execute over crypted values will also be referred to as ciphertext.
encrypted values We will assume that the database consists of a single table, which
in turn consists of a single column. The domain of the column will
be initially assumed to be a subset of integer val(8sia, Pmax)-
The extension for real values is given later in the paper.
Encrypted values in Assume the databageconsists of a total of?| plaintext values.
both tables & indexes Out of these|P| values are unique, which will be represented as
_ - P = p1,p2,...,p|p|» Pi < pi41 The corresponding encrypted
Figure 1 Transparentencrypzlon in the “trusted database soft- values will be represented 65= c;,cz, . .. , cjp|, ¢i < Cit1-
ware with vulnerable storage” setting. Duplicates can sometimes be used to guess the distribution of a

domain, particularly if the distribution is highly skewed. A closely
encrypted value; a breach may occur if the adversary succeeds elated problemis thatif the number of distinct values is small (e.g.,

in obtaining a tight estimate of. For a numeric domai®, if day of the month), it is easy to guess the domain. We will ini-
an adversary can estimate with confidence that a data value tially assume that the domain to be encrypted either does not con-
p lies within the interval[p:, p»] then the interval width(p, — tain many duplicates or contains a distribution that can withstand a
p1)/domain-widtt{ P) defines the amount of estimation exposure duplicate attack, and discuss the handling of duplicates later in the
atc% confidence level. paper.

Qlearly, .any _order-preserv_lng encryption scheme is vulnerable 1.4 Paper Layout
to tight estimation exposure if the adversary can choose any num-
ber of unencrypted (encrypted) values of his liking and encrypt The rest of the paper is organized as follows. We first discuss re-
(decrypt) them into their corresponding encrypted (unencrypted) lated work in Section 2. We give an overview of OPES in Section 3.
values. Similarly, any order-preserving encryption is not secure The next three sections give details of the three main phases of
against tight estimation exposure if the adversary can guess the doOPES. We describe extensions to handle real values and duplicates
main and knows the distribution of values in that domain. in Section 7. In Section 8, we study the quality of the encryption
We consider an application environment where the goal is safety Produced by OPES and present performance measurements from a
from an adversary who has access to all (but only) encrypted valuesPB2 implementation. We conclude with a summary and directions
(the so callectiphertext onlyattack [22] [24]), and does not have  for future workiin Section 9.
any special information about the domain. We will particularly fo-
cus on robustness against estimation exposure. 2. RELATED WORK

1.2 Threat Model Summation of Random Numbers A simple scheme has been

proposed in [3] that computes the encrypted valw# integerp

_ asc = ».5_, R;, whereR; is the jth value generated by a se-

¢ The storage system used by the database software is vulnera e pseudo-random number generaorUnfortunately, the cost
ble to compromiséhile current database systems typically ¢ makingp calls to R for encrypting or decrypting can be pro-
perform their own storage management, the storage systempipitive for large values of.
remains part of the operating system. Attacks againststorage A more serious problem is the vulnerability to estimation ex-
could be performed by accessing database files following a posure. Since the expected gap between two encrypted values is
path other than through the database software, or in the ex- proportional to the gap between the corresponding plaintext val-
treme, by physical removal of the storage media. ues, the nature of the plaintext distribution can be inferred from the

¢ The database software is trusted.We trust the database encrypted values. Figure 2 shows the distributions of encrypted val-
software to transform query constants into their encrypted ues obtained using this scheme for data values sampled from two
values and decrypt the query results. Similarly, we assume different distributions: Uniform and Gaussian. In each case, once
that an adversary does not have access to the values in thepoth the input and encrypted distributions are scaled to be between
memory of the database software. 0 and 1, the number of points in each bucket is almost identical for

e All disk-resident data is encryptedn addition to the data the plaintext and encrypted distributions. Thus the percentile of a
values, the database software also encrypts schema infor-point in the encrypted distribution is also identical to its percentile
mation such as table and column names, metadata such asn the plaintext distribution.

We assume (see Figure 1):
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Figure 2: Summation of random numbers: Distribution of en- Figure 3: Polynomial functions: Encryption of different input
crypted values tracks the input distribution. distributions look different.

build a B-tree over plaintext values, but then encrypt every tuple
Polynomial Functions In [12], a sequence of strictly increasing and the B-tree at the node level using conventional encryption. The
polynomial functions is used for encrypting integer values while advantage of this approach is that the content of B-tree is not visible
preserving their order. These polynomial functions can simply be to an untrusted database server. The disadvantage is that the B-tree
of the first or second order, with coefficients generated from the en- traversal can now be performed by the front-end only by execut-
cryption key. An integer value is encrypted by applying the func- ing a sequence of queries that retrieve tree nodes at progressively
tions in such a way that the output of a function becomes the input deeper level.

of the next function. Correspondingly, an encrypted value is de- oo RejevantWork Rivestetal. [21] suggestthat the limit on
crypted.by solving these functions |n. reverge qrde_r. I—_|owever, this manipulating encrypted data arises from the choice of encryption
encryption method does not _tak_e thg input distribution into account. functions used, and there exist encryption functions that permit en-
Therefore the shape_of the _dlsFrlbu_tlon of encrypt.ed yalues dependscrypted data to be operated on directly for many sets of interesting
on the ghape of _the mput Q|str|but|on, as §hown in Elggre 3 fo_r the operations. They call these functions “privacy homomorphisms”.
encryption functl.on given in Example 19 in [12].. This |IIustrat|9n The focus of [21] and the subsequent follow-up work [2] [8] [9]
sgggest_s that t_hls scheme may_ reveal information about the iNPUtL o5 been on designing privacy homomorphisms to enable arith-
distribution, which can be exploited. metic on encrypted data, but the comparison operations were not
Bucketing In [13], tuples are encrypted using conventional en- investigated in this line of research.
cryption, but an additional bucket id is created for each attribute  In [10], a simple but effective scheme has been proposed to en-
value. This bucket id, which represents the partition to which the crypt a look-up directory consisting of (key, value) pairs. The goal
unencrypted value belongs, can be indexed. The constants apis to allow the corresponding value to be retrieved if and only if
pearing in a query are replaced by their corresponding bucket ids.a valid key is provided. The essential idea is to encrypt complete
Clearly, the result of a query will contain false hits that must be tuples, but associate with every tuple the one-way hash value of its
removed in a post-processing step after decrypting the tuples re-key. Thus, no tuple will be retrieved if an invalid key is presented.
turned by the query. This filtering can be quite complex since the Answering range queries was not a goal of this system.
bucketids may have been used in joins, subqueries, etc. The num- In [23], interesting schemes are proposed to support keyword
ber of false hits depends on the width of the partitions involved. Itis searches over an encrypted text repository. The driving application
shown in [13] that the post-processing overhead can become excesfor this work is the efficient retrieval of encrypted email messages.
sive if a coarse partitioning is used for bucketization. On the other Naturally, they do not discuss relational queries and it is not clear
hand, a fine partitioning makes the scheme vulnerable to estimationhow their techniques can be adapted for relational databases.
exposure, particularly if an equi-width piioning is used. In [4], a smart card with encryption and query processing ca-
It has been pointed out in [6] that the indexes proposed in [13] pabilities is used to ensure the authorized and secure retrieval of
can open the door to interference and linking attacks. Instead, theyencrypted data stored on untrusted servers. Encryption keys are



(a) Input: Uniform, Target: Zipf running OPES with different input distributions and the same target
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§1500 g were generated solely from the user-specified target distribution,
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£1000 ¢ 1 if an adversary has all of the encrypted values, he cannot fer
2 § from those values. By appropriately choosing target distribution,

500 K i the adversary can be forced to make large estimation errors.
0 * This simple scheme, while instructive, has the following short-
0 1 comings for it to be used for encrypting large databases:

Scaled Domain ) ) . .
¢ The size of encryption key is twice as large as the number of

. . ni values in the database.
Figure 4: lllustrating OPES. unique

e Updates are problematic. When adding a new vajuehere
pi < p < pit1, we will need to re-encrypt afl;, j > 1.t

maintained on the smart card. The smart card can translate exact
match queries into equivalent queries over encrypted data. How-
ever, range queries require creating a disjunction for every pos-
sible value in the range, which is infeasible for real data values.
The smart card implementation could benefit from our encryption
scheme in that range queries could be translated into equivalent3.2 Qverview of OPES

quenes over encryp_ted data. . When encrypting a given databa®e OPES makes use of all

In [25], the sec_urlty and tamper resstqnce of a dgtabase Storedthe plaintext values currently presef and also uses a database
on a smart card |s.explor§q. They consider snooping attacks fF’rof sampled values from the target distribution. Only the encrypted
secrecy, and spoofing, splicing, and replay attacks for tamper reSIS-qatabasé is stored on disk. At the same time, OPES also creates
tance. Retrieval performance is not the focus of their work and it some auxiliary informatiork, which the database system uses to
is not clear how much of their techniques apply to general purpose decrypt encoded values or encrypt new values. Toserves the

dafbases not stored.lnl zpeckl)allzed dgwces.o le 8i all | function of the encryption key. This auxiliary information is kept
mongst commercial database products, Oracle 8i allows va uesencrypted using conventional encryption techniques.

in any of the columns of a table to be encrypted [18]. However, OPES works in three stages:

the encrypted column can no longer participate in indexing as the ) o
encryption is not order-preserving. 1. Model: _The_ input ar_ld target distributions are modeled as
Related work also includes research on order-preserving hashing piece-wise linear splines.

[5] [11]. However, protecting the hash values from cryptanalysisis ~ 2- Flatten: The plaintext databaseis transformed into a “flat”

not the concern of this body of work. Similarly, the construction of databasé’ such that the valuesifi are uniformly distributed.

original values from the hash values is not required. !It is possible to avoid immediate re-encryption by choosing an
encrypted value fop in the interval ¢, c;+1), butT would still
need updating. Moreover, there might be cases whgke= c¢;+1

3. PROPOSED ORDER-PRESERVING EN-  and _theref?re inserting a new value will require re-encryption of
t .
CRYPTION SCHEME ﬁl)gtselrtlr?a\{atkllfsencryption schemge = T'[p;] circumvents the up-

The basic idea of OPES is to take as input a user-provided tar- date problem. But now the size of the key becomes the size of the
S . . domain. It is also vulnerable to percentilep@sure, as discussed
get distribution and transform the plaintext values in such a way aayjier in Section 2.

that the transformation preserves the order while the transformed 2|t g, installation is creating a new database, the database admin-
values follow the target distribution. Figure 4 shows the result of istrator can provide a sample of expected values.

OPES has been designed such that the result of encryption is sta-
tistically indistinguishable from the one obtained using the above
scheme, thereby providing the same level of security, while remov-
ing its shortcomings.




3. Transform: The flat databasé’ is transformed into the ci- 4.2 Growth Phase
pher databas€' such that the values i@ are distributed

_ ar tie ! We are given a buckép:, pr), with h — I — 1 (sorted) points:
according to the target distribution.

{pi+1,pi42,--- ,Pr—1}. We first find the linear spline for this
Note that bucket. Next, for each point; in the bucket, we compute its ex-
pected value if the points were distributed according to the density
distribution modeled by the linear spline (i.e., the expected value

We give details of the three stages in Sections 4, 5 and 6 respecf the (s — 1)th smallest value in a set ¢f — I — 1 random val-

pi<p; = fi< f; = ¢ <cy.

tively. ues drawn from the distribution). We then split the bucket at the
point that has the largest deviation from its expected value (break-
4. MODELING THE DISTRIBUTIONS ing ties arbitrarily). We stop splitting when the number of points in

a bucketis below some threshold, say, 10.
Techniques for modeling data distributions have been studied ex-

tensively in the database literature in the context of estimating the 4.3  Prune Phase
costs of different query execution plans. As stated in [16], there are
two broad categories of techniques: histogram-based that captured
statistical information about a distribution by means of counters
for a specified number of buckets, and parametric that approximate
a distribution by fitting the parameters of a given type of function.
We experimented with several histogram-based techniques [15], in-
cluding equi-depth, equi-width, and wavelet-based methods, but LB(p:,prn) = DataCogtp:,pr) — DataCodp:, ps)
found that the flattened values obtained were not uniformly dis-
tributed unless the number of buckets was selected to be unreason-

ably large. The main source of the problem was the assumption thatyhere DataCosg ,p2) gives the cost of describing the data in the
the distribution is uniform within each bucket. The parametric are interval [p1,p2) and IncrModelCost is the increase in modeling
suitable for closed-form distributions but lead to poor estimations cost due to the partitioning of a bucket into two buckets.
for irregular distributions [16], which we expect to be the norm in The global benefit GB of splitting this bucket a¢ takes into
our application. account the benefit of further recursiveitsp
We, therefore, resorted to a combination of histogram-based and
parametric techniques. As in [16], we first partition the data values ~ GB(pi,pr) = LB(pi,pr) + GB(pi, ps) + GB(ps, pr).
into buckets and then model the distribution within each bucket as o ) ) ]
a linear spline. The spline for a bucKet, pr) is simply the line If GB > 0, tr_'e SP"‘_ is retained; otherwise, the splitratand )
connecting the densities at the two end-points of the bucket. all recursive splits withirjp:, pr.) are pruned. Note that we do this
We also allow the width of value ranges to vary across buck- computation bottom up, and therefore the costis linear in the num-

+D
ets. However, unlike [16], we do not have a given fixed number P€r Of splits:

of buckets. Rather, we use the minimum description length (MDL) Ve now provide the functions for the _computa_tion of DataCost
principle [20] to determine the number of buckets. and IncrModelCost. Assume momentarily the existence of a map-

ping M that transforms values sampled from a linear density func-
4.1 Bucket Boundaries tion into a set of uniformly distributed values. We speciff in
the next section. As we shall se¥, will have two parameters: a
quadratic coefficient and a scale factor.

The MDL principle [20] states that the best model for encoding
ata is the one that minimizes the sum of the cost of describing the
model and the cost of describing the data in terms of that model.
For a given buckefp:, pr), the local benefit LB of splitting this
bucket at a poing, is given by

— DataCodps, prn) — IncrModelCost

The bucket boundaries are determined in two phéses:

1. Growth phase.The space is recursively split into finer par-
titions. Each partitioning of a bucket reduces the maximum 4.3.1 DataCost
deviation from the density function within the newly formed We want to flatten a given data distribution into a uniform distri-
buckets when compared to their parent bucket. bution. So, given a bucket, we first flatten the values present in the
bucket using the mappinf, and then compute the cost of encod-
2. Prune phase.Some buckets are pruned (merged into big- jng the deviations from uniformity for the mapped val(es.
ger buckets). The idea is to minimize the number of buckets Let the set of data valug®:, pi41, .. . , pr—1 } be mapped into

and yet have the values within buckets after mapping be uni- {fi, fis1,- .., fa_1} using M. The encoding of a valug; €
formly distributed. We use the MDL principle to obtain this

balance. 50One might wonder why we did not combine pruning with the
growth phase and stop splitting a bucket as soon as the local benefit
The details of these two phases are discussed next. became zero or negative. The reason is that the benefittitfiqrar

ing may start showing only at a finer granularity, and it will often
3In [16], the splines are not continuous across buckets; they use lin-be the case that the local benefit is less than zero even though the
ear regression over data values presentin a bucket for determiningglobal benefit is much greater than zero.

the spline. However, such discontinuities may causeesirable ®Note that our implementation encodes only the statistically sig-
breaks in the uniformity when we flatten plaintext values. nificant deviations to avoid overfitting, i.e., rather than a single ex-
“This procedure is reminiscent of the procedure for building deci- pected value, we consider the range of values that would occur with
sion tree classifiers, and in particular SLIQ [17], but the details are a uniform distribution, and only encode values that are outside this
quite different. range. We omit this detail for brevity.




[p1, pr) would cost
Costpi) = log|f: — E(1)],
whereE(z), the expected value of théh number assuming unifor-
mity, is given by
.  — 1
E() = fi+ h(fh - 7).

The cost of encoding all the values in the interigal pr) is then
given by

h—1
DataCodp:, pr) = Z Cost{p:).

i=l+1

4.3.2 IncrModelCost

If we havem buckets, we need to store + 1 boundariesm
quadratic coefficients, anek scale factors. Thus the model cost
will be (3m + 1) x 32, assuming 32 bits for each of these values.
More importantly, the cost of an additional bucket

IncrModelCost= 32 x 3 = 96.

5. FLATTEN

The overall idea of the flatten stage is to map a plaintext buBket
into a bucketB in the flattened space in such a way that the length
of B' is proportional to the number of values presenBinThus,

5.2 Scale Factor

We need to find the scale facter one for each bucka® such
that:

1. Two distinct values in the plaintext will always map to two
distinct values in the flattened space, thereby ensuring incre-
mental updataility.

2. Each bucketis mapped to a space proportional to the number
of pointsn in that bucket, i.e., ifv is the width of the bucket
andw’ = M(w) is the width after flattening, then® « n.

The first constraint can be written as:
Vpe[0,w): M(p+1)— M(p) > 2.

The 2 in the RHS (instead of 1) ensures two adjacent plaintext val-
ues will be atleast 2 apartin the flattened space. As we will explain
in Section 5.5, this extra separation makes encryption tolerant to
rounding errors in floating point calculations. Expandig we

get

Vpe[0,w): z2>2/(s(2p+1)+1).
The largest value df/(s(2p 4+ 1) 4+ 1) will be atp = 0 if s > 0,
and atp = w — 1 otherwise. Therefore we get

N s>0
z—{ 2/(1+s2w—1)), s<0

wherez denotes the minimum value efthat will satisfy the first

the dense plaintext buckets will be stretched and the sparse bucketggnstraint.

will be compressed. The values within a bucket are mapped in
such a way that the density will be uniform in the flattened bucket.

To satisfy the second constraint, we want

wl = Kn

Since the densities are uniform both inter-bucket and intra-bucket,
the values in the flattened database will be uniformly distributed. o a1l the buckets. Define
We specify next a mapping function that accomplishes these goals.

5.1 Mapping Function

OBSERVATION 1. If a distribution over[0, px) has the density
functiongp + r, wherep € [0, pr), then for any constant > 0,
the mapping function

q

M(p) = 2(L

will yield a uniformly distributed set of values.

p° +p)

O
This follows from the fact that the slope of the mapping function

at any poinip is proportional to the density at’

dM
dp

V4

;(qp +7)

x qp-+r.

We will refer tos := g/2r as the quadratic coefficient. Thus
M(p) = 2(sp” + p)

A different scale factor is used for different buckets, to make
the inter-bucket density uniform as well. We describe next how the
scale factors are computed.

"An equivalent way to think about this is that the space arqynd
say fromp — 1 top + 1 is mapped to a length of

2z
Mp+1)-M(p-1)= 7(qp+7’)0<qp+r.

@f = é(sw2 + w)
as the minimum width for each bucket, and define
K = max ['L?/f] 2=1,...,m.

Then the scale factors
Kn

sw? +w

will satisfy both the desired constraints, since> 2, andw’ =
z(sw2 +w) = Kn.

5.3 Encryption Key

Let us briefly review what we have at this stage. The model-
ing phase has yielded a set of buckgtB:, ... , B, }. For each
bucket, we also have a mapping functidhy characterized by two
parameters: the quadratic coefficiarand the scale factor. We
save them + 1 bucket boundaries, thex quadratic coefficients,
and them scale factors in a data structuk&. The database sys-
tem uses(’ to flatten (encrypt) new plaintext values, and also to
unflatten (decrypt) a flattened value. THG$ serves the function
of the encryption key.

Note that/C’ is computed once at the time of initial encryption
of the database. As the database obtains new valifes used to
encrypt them, but it is not updated, which endows OPES with the
incremental updatality property?®

8n order to encrypt stray values outside of the current



5.4 Mapping aPlaintext Value into a Flat Value

Representthe domains of the input datalfas@ed the flat database
F aS[pmin, Pmax) aNd[fmin, fmax) respectively. Note that

fmax = fmin + Z'wf

=1

wherew! = M;(w;). Recall thatw; is the length of plaintext

bucketB;, andwf the length of the corresponding flat bucket.

To flatten a plaintext valug, we first determine the bucké&;
into whichp falls, using the information about the bucket bound-
aries saved iC*. Now p is mapped into the flat valug using the
equation:

i—1
f = fmin + Z'wjf + Mz(p — Pmin
7=1

1—1
S
=1

5.5 MappingaFlatValueinto aPlaintext Value
We can rewrite the previous equation as
1—1 1—1
P = Pmin +Zw.7 +Mi_1(f — fmin — ngf)
=1 7=1
where

M_l(f) _ —z £ /22 4+ 4zsf
2zs

andz ands represent respectively the scale factor and the quadratic
coefficient of the mapping functiol/ .® So, unflattening requires
using the information inC’ to determine the flat bucke®; in
which the given flat valug lies and then applyingZ . Out of
the two possible values fd ~*, only one will be within the bucket
boundary.

Note thatM (p), as well asM ~'(f), will usually not be inte-

gers values, and are rounded to the nearest integer. To remove the

possibility of errors due toounding floating point calculations, we
verify whetherM ~! (f) = p immediately after computind/ (p).

If it turns out thatM ~'(f) is actually rounded te — 1, we en-
cryptp asf + 1 instead off. Since we ensured that two adjacent

plaintext values are atleast 2 apart in the flattened space when com-

puting the scale factordd ~* (f + 1) will decrypt top and not to
p+ 1. Similarly, if M~'(f) = p + 1, we encrypp asf — 1.

range [pmin, Pmax), We create two special bucketd,
[MINVAL , prain ) @0d Brt1 = [Pmax, MAXVAL ] where [MIN-

VAL, MAXVAL] is the domain of the input distribution. Since
these buckets initially do not contain any values, we estimate the
s andz parameters for them. The quadratic coefficierior the
buckets is set to 0. To estimate the scale factoHgrwe extrap-
olate the scaling used for the two closest point&ininto B, and
definezo to be(f> — f1)/(p2 — p1). Similarly, the scale factor for
B..+1 Is estimated using the two closest values in bucBstsTo
simplify expodgtion, the rest of the paper ignores the existence of
these special buckets.

®When |sf| is small relative to|z|, the computation of-z +

v/ 22 +4zsf will result in loss of precision wheg is positive

(and similarly—z — /22 + 4zsf will lose precision where is
negative). Thus we use the alternate formulation [19]

—2f

—2F /22 +4zsf

M7H(f)

in those cases.

1. Compute the buckets2. From the target distri-
used to transform the plain- bution, compute the buckets
textdistribution into the flat- for the flattened distribution

tened distribution Bf,
t
Bf 0
— A;////////
B / of
0 — J— Bo_
BT — " -
Bk—l \ R
—_— f —
{
-1 By-1

3. Scale the buckets of the flattened target distribution to
equal the range of the flattened distribution computed in Step
1, and scale the target distribution proportionately.

C
—Bo
£
— B B—
0 _
B, T L _
f
f -
Bm-1Bly
C
Br-1

Figure 5: Scaling the target distribution.

6. TRANSFORM

The transform stage is almost a mirror image of the flatten stage.
Given a uniformly distributed set of flattened values, we want to
map them into the target distribution. An equivalent way of think-
ing about the problem is that we want to flatten the target distribu-
tion into a uniform distribution, while ensuring that the distribution
so obtained “lines-up” with the uniform distribution yielded by flat-
tening the plaintext distribution.

Figure 5 portrays this process. We already have on hand the
buckets for the plain text distribution (Step 1). We bucketize the
target distribution, independent of the bucketization of the plain-
text distribution (Step 2). We then scale the target distribution (and
the flattened target distribution) in such a way that the width of the
uniform distribution generated by flattening the scaled target dis-
tribution becomes equal to the width of the uniform distribution
generated by flattening the plaintext distribution (Step 3).



We will henceforth refer to the scaled target distribution as the 6.3 Mapping Flat Values to Cipher Values

cipher distribution. We save the bucket boundaries in the cipher space in the data

structure/C¢. For every bucket, we also save the quadratic coeffi-
cients© and the scale factar“.

A flat value f from the bucketb_?f can now be mapped into a
cipher value: using the equation

6.1 Scaling the Target Distribution

The modeling of target distribution yields a set of buckgts
Bf,...,B} }. For every buckeB* of lengthw?, we also get
the mapping functiod/® and the associated parametgrandz"*. i
For computing the scale factef for each bucket, we use a proce- €= coin + Z w4 (ME) ™ (f = fonin — Z
dure similar to the one discussedin Section 5.2, except that the first =
constraint is flipped. We now need to ensure that two adjacent val- where
ues in the flat space map to two distinct values in the target space
(whereas earlier we had to ensure that two adjacent values in the
plaintext space mapped to two distinct values in the flat space).

An analysis similar to Section 5.2 yields

1 —z+ /22 +4szf
(M) (f) = =5
Only one of the two possible values will lie within the cipher bucket,
and we round the value returned @y <)~

A cipher valuec from the buckeB; is mapped into a flat value
£ using the equation

St K'n?
- st(wt)2 + wt
=1
f = fmin + Z@Jf + Mic(c — Cmin —

7—1
> o).
j=1

and

o [ 05/(1+s" (2w —1)), s*>0
27 o5, st <0.

Let B be the bucketin the flat space corresponding to the bucket

B*, with length# . We also have buckesB/, ..., Bf, } from
flattening the plaintext distribution. As before, let bucEst have
lengthw?.
equal. So we define the matching facfoto be

- () x)

We then scale both the target buck&s and the flattened target
bucketsB' by a factor ofL. So the length of the cipher bucket

B¢ corresponding to the target buckBt is given byw; = Lw}
and the length of the scaled flattened target buékets given by
@f = Lo,

6.2 Mapping Function

We now specify the functiod/© for mapping values from the
bucketB© to the flat buckeB*. The quadratic coefficient fav/¢
is determined as® = s*/L, and the scale facter is set toz*, for
reasons explained next.

Recall thats® := ¢°/2r*, wheren! = ¢‘z + r* is the linear
approximation of the density in the buckBt. When we expand
the domain by a factor of., ¢*/r* is reduced by a factor of.
Therefores® = s*/L.

Now z¢ should ensure that/ (w
provides this property since

(s (w")* +w)
“((s*/L)(Lw")* + Lu®)

t

Settingz® = z

c) — 'IIIC.

MC('LUC) —

We want the range of the two flat distributions to be

6.4 Space Overhead

The size of the ciphertext depends on the skew in the plaintext
and target distributions. Definé ;= to be the smallest gap between
sorted values in the plaintext, agfl ., as the largest gap. Simi-
larly, letg? ;. andgt,,, be the smallest and largest gaps in the tar-
get distribution. Defin&? = g&,./q%. , andG* = g}, ./ 9bin-
Then the additional number of bits needed by the ciphertext in the
worst case can be approximatedasG, + log G:. Equivalently,
an upper bound fOofmax — Cmin iS given byGp x Gy X (Pmax —

Pmin ) .

To see why this is the case, consider that when flattening, we
need to make all the gaps equal. If almost all the gaps in the plain-
text are close t@? ;. while only a few are close tgk,.., we will
need to increase each of the former gapgig, , resulting in a size
increase of%../g9>;,. Similarly, there can be a size increase of

thax/th;n When transforming the data if most of the target gaps
are close tdZ, .

Note that we can explicitly contr@¥. since we choose the target
distribution. WhileG,, is outside our control, we expect th@}, x
G will be substantially less tha???, i.e., we will need at most an
additional 4 bytes for the ciphertext than for the plaintext.

7. EXTENSIONS

7.1 Real Values

An IEEE 754 single precision floating point number is repre-
sented in 32 bits. The interpretation of positive floating point val-
ues simply as 32-bit integers preserves order. Thus, OPES can be
directly used for encrypting positive floating point values.

Negative floating point values, however, yield an inverse order
when interpreted as integers. Nevertheless, their order can be main-
tained by subtracting negative values from the largest negat& j.
The query rewriting madule (Figure 1) makes this adjustmentin the
incoming query constants and the adjustment is undone before re-
turning the query results.

A similar scheme is used for encrypting 64-bit double precision
floating point values.



7.2 Duplicates

An adversary can use duplicates to guess the distribution of a
domain, particularly if the distribution is highly skewed. Similarly,
if the number of distinct values in a domain is small (e.g., day of
the month), it can be used to guess the domain. The solution for
both these problems is to usdnamophonischeme [22] in which
a given plaintext value is mapped to a range of encrypted values.

The basic idea is to modify the flatten stage as follows. First,
when computing the scale factors for each bucket using the con-
straint that the bucket should map to a space proportional to the
number of points in the bucket, we include duplicates in the num-
ber of points. Thus, regions where duplicates are prevalent will be
spread out proportionately, and adjacent plaintext values in such
regions will be mapped to flattened values that are relatively far
apart.

Suppose that using our current algorithm, a plaintext value
maps into a valug in the flat space, ang+ 1 maps intof’. When
encryptingp, we now randomly choose a value from the interval
[f, f"). Thus the encrypted values pfwill be uniformly spread
in the intervalf, f'). Combined with the intra-bucket uniformity
generated by the linear splines and the inter-bucket uniformity from
the scale factors, this will result in the flattened distribution being
uniform even if the plaintext distribution had a skewed distribution
of duplicates. This is the only change to the algorithm — having

8.2 Datasets
We used the following datasets in our experiments:

¢ CensusThis dataset from the UCI KDD archive (http://kdd.
ics.uci.edu/databases/census-income/census-income.html) con-
tains the PUMS census data (about 30,000 records). We used
the income field in our experiments.

Gaussian: The data consists of integers picked randomly
from a Gaussian distribution with a mean of 0 and a stan-
dard deviation of MAXINT/10.

Zipf: The data consists of integers picked randomly from a
Zipf distribution with a maximum value of MAXINT, and
skew @) of 0.5.

Uniform: The data consists of integers picked randomly from
a Uniform distribution between -MAXINT and MAXINT.

Our default dataset size for the synthetic datasets was 1 million
values. The plaintext values were 32-bit integers. Both flattened
and final ciphertext values were 64-bit long.

8.3 Distribution of Encrypted Values

We tested whether it is possible to statistically distinguish be-
tween the output of OPES and the target distribution by applying
the Kolmogorov-Smirnov test used for this purpose. The Kolmogorov-
Smirnov test answers the following question [19]:

hidden the duplicates in the flatten stage, no change is necessary in

the transform stage.

Selections on data encrypted using this extension can be per-

formed by transforming predicates, e.g., converting equality against

Can we disprove, to a certain required level of signifi-
cance, the null hypothesis that two data sets are drawn
from the same distribution function?

a constant into a range predicate. But some other operations such

as equijoin cannot be directly performed. This might be acceptable
in applications in which numeric attributes are used only in selec-

We conservatively try to disprove the null hypothesis at a signif-
icance level of 5%, meaning thereby that the distribution of en-

tions. For example, consider a hospital database used for medicafTYPted values generated by OPES differs from the chosen target

research. Patient data will typically be joined on attributes suc
as patient-id that can be encrypted with conventional encryption.
However, numeric attributes such as age and income may strictly
be used in range predicates.

8. EVALUATION

In this section, we study empirically the following questions:

1. Distribution of Encrypted ValuesHow indistinguishable is
the output of OPES from the target distribution?

. Percentile ExposurdHow susceptible to the percentilepo-
sure are the encrypted values generated by OPES?

. Incremental Updataility: Does OPES gracefully handles
updates to the database?

. Key SizeHow big an encryption key does OPES need?

. Time OverheadWhat is the performance impact of integrat-
ing OPES in a database system?

8.1 Experimental Setup

The experiments were conducted by implementing OPES over
DB2 Version 7. The algorithms were implemented in Java, except
for the high precision arithmetic that was implemented in C++ (us-
ing 80-bit long doubles). The experiments were run using version
1.4.1 of the Java VM on a Microsoft Windows 2000 workstation
with a 1GHz Intel processor and 512 MB of memory.

1

h distribution?® In addition to the Census data, we used four sizes

for the three synthetic datasets: 10K, 100K, 1M, and 10M values.
For each of these input datasets, we experimented with three target
distributions: Gaussian, Zipf, and Uniform.

We could not disprove the null hypothesis in any of our exper-
iments. In other words, the distribution of encrypted values pro-
duced by OPES was consistent with the target distribution in every
case.

We also checked whether the output of Stage 1 (flatten) can be
distinguished from the Uniform distribution. Again, in every case,
we could not disprove the hypothesis that the distributions were
indistinguishable, implying that flattening successfully masked the
characteristics of the plaintext distribution.

We should mention here that we also experimented with model-
ing input distribution using equi-width and equi-depth histograms
(with the same number of buckets as in our MDL model). When we
applied the Kolmogorov-Smirnov test to check the indistinguisha-
bility of the flattened distributions so obtained from the uniform
distribution, the hypothesis was rejected in every case except when
the input data was itself distributed uniformly. These results reaf-
firmed the value of using the proposed piece-wise linear function
for modeling a density distribution.

%Note that this test is much harsher on OPES than using a stronger
significance level of 1%. If the null hypothesis is rejected at a sig-
nificance level of 5%, it will also be rejected at a significance level
of 1%.
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Figure 6: Average change between the original percentile and T oo : :
the percentile in the encrypted distribution. 10K lo%'étaset sith 1oM

. Figure 7: Time per tuple (in milleseconds) required to build the
8.4 Percentile Exposure e per tuple ( Jred
Figure 6 shows the average change between the original per-
centile and the percentile in the encrypted distribution. For exam- . . .
ple, suppose the plaintext data had a range between 0 and 100, anHon, if we were to use wider tuples with columns that were not

the ciphertext had a range between 0 and 1000. Then, a plaintexﬁﬂzrzgfﬁgl/g%;ﬁ:;tngr overhead would come out to be lower.

value of 10 that was mapped to a ciphertext value of 240 would : - s
bp P Figure 7 shows the model building cost for the 3 synthetic distri-

have a change d10 — 24|, or 14 percentile points. Thus, the first . . . .
line in the figure states that each value moved on average by 37butlops,fc_)r dataset §|zes rang_mgfrom 10,000.t0 10 m|||_|on.re_cords.
The time increases linearly with the dataset size, and is similar for

percentile points when going from Census to Gaussian. The reason Il 3 distributions. The fotal ime was less than 4 minutes for 1 mil
there is relatively less percentile change when transforming Censusﬁ1 or s rdu ﬁis' : ?iri et \?Vshieﬁs nab red u edsbo inl-
to Zipfis that Censusitself is largely Zipfian. Hence by judiciously on records. 11s a one-time cost, which can be reducedby using a

choosing a target distribution that is substantially different from sa'r:r:plerof8thid\;a\1/ta.th verhead due to encrvotion of datab i
the input data, we can create large change in the ptleegalues, gure & shows he overhead due to encryption of database in-

: . . serts. The encrypted values followed a Zipf distribution, and the
which shows the robustness of OPES against percerpleseire. . . L
g P plaintext values followed a Gaussian distribution. The graph shows

8.5 Incremental Updatability the percentage overhead of encrypting and inserting 1 to 10,000
. . .values when compared to the cost of inserting an identical number
For an encryption scheme to be useful in a database system, it ) . .

P y of plaintext values, for databases of different sizes (10K to 10M).

should be able to handle updates gracefully. We have seen thatF_ 9sh the absolute i for i " dditional val .
with OPES a new value can easily be inserted without requiring 'gure = Shows the absolute fimes for INserting additional vaiues in
a table having 10 million tuples. Figures 8 and 9 clearly show that

changes in the encryption of other values. . . .
g vp this overhead is negligible.

Recall that we compute the bucket boundaries and the mapping Fi 10 sh the | t of d i th wrieval of
functions when the database is encrypted for the first time, and then igure shows the impact ot decryption on the retneval o

do not update them (unless the database administrator decides téuples from databases of different sizes. We have also varied the

re-encrypt the database afresh). We studied next whether the en_number of tuples retrieved to study the impact of selectivity. The

crypted values remain consistent with the target distribution after encrypted values followed a Zipf distribution, and the plaintext val-

updates. For this experiment, we completely replaced all the datamras ?;Io:;ll\)//ed lavsae:ufsilan S |str|:)u(;|ioni T?e ovenrcr;esa;) /rar:ges from
values with new values, drawn from the same plaintext distribu- \?vr?un | Otiilo 1emi||ci) :? Q/rz edicates fo au o slower
tion. But we did not updat&® or C¢. We did this experiment with en selecting on recoras.

all the four types of datasets, and for each of them we considered To understand the reason for higher overhead for less selective
Gaussian, Zipf, and Uniform (’Jlistributions queries, note that the decryption time per tuple is constant. Fig-

Applying the Kolmogorov-Smirnov test again, we found that frgllfN?;OXV;rTiﬁ tlrr1nte p:artuplev\t/o I:etne:zplalntext;lijplet_s from a
even with this 100% replacement, the ritieg distributions were able on fuples, as wefl as the copeading ime per

still statistically indisthguishable from the target distributions. tuple to retrieve and decryptencrypt_ed tples. DB2 has excellent
performance on sequential I/O, which reduces per record 1/O cost

8.6 Key Size for less selective queries. The percentage overhead due to decryp-
tion, therefore, increases. The absolute numbers, however, are very

The size of the encryption ke depends on the number of )
yp ek dep reasonable: around 3 micro-seconds to decrypt one value.

buckets needed for partitioning a distribution, the total size being
roughly three times the number of buckets. We found that we did
not need more than 200 buckets for any of our datasets (includingg' SUMMARY
those with 10 million values); for Uniform, the number of buckets ~ With the dramatic increase in the amount of data being collected
needed was less than 10. Thus, the encryption key can be just a fewand stored in databases, it has become vital to develop effective
KB in size. techniques for protecting sensitive data from misuse. The access
. control mechanisms conventionally used by database systems be-
8.7 Time Overhead come helpless if an intruder can get unauthorized access to the
We used a single column table in these experiments. The rea-database files. Encryption can be used to provide an extra level of
son was that we did not want to mask the overhead of encryp- security. Unfortunately, the use of standard encryption techniques
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Figure 11: Time per tuple (in milliseconds) required to retrieve
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for this purpose results in degradation in the performance of the
database system. The main source of the problem is that the stan-
dard techniques do not preserve order and therefore the database
indices such as B-tree can no longer be used for answering range
queries.

We proposed a new order preserving encryption scheme, OPES,
that allows queries with comparison operators to be directly applied
to encrypted numeric columns. Query results neither contain any
false positive nor miss any answer tuple. New values can be added
without triggering changes in the encryption of other values. OPES
is designed to operate in environments in which the intruder can get
access to the encrypted database, but does not have prior informa-
tion such as the distribution of values and cannot encrypt or decrypt
arbitrary values of his choice. In such environments, OPES is ro-
bust against an adversary being able to obtain a tight estimate of an
encrypted value. The measurements from an implementation over
DB2 shows that the performance overhead of OPES on query pro-
cessing is small and reasonable for it to be deployed in production
environments.

In the future, we plan to study the encryption of non-numeric
data such as variable length strings. We also plan to investigate
system issues such as key management and the impact of encryp-
tion on query plans and query optimization.
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