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ABSTRACT
Encryption is a well established technology for protecting sensi-
tive data. However, once encrypted, data can no longer be easily
queried aside from exact matches. We present an order-preserving
encryption scheme for numeric data that allows any comparison op-
eration to be directly applied on encrypted data. Query results pro-
duced are sound (no false hits) and complete (no false drops). Our
scheme handles updates gracefully and new values can be added
without requiring changes in the encryption of other values. It al-
lows standard database indexes to be built over encrypted tables
and can easily be integrated with existing database systems. The
proposed scheme has been designed to be deployed in application
environments in which the intruder can get access to the encrypted
database, but does not have prior domain information such as the
distribution of values and cannot encrypt or decrypt arbitrary val-
ues of his choice. The encryption is robust against estimation of the
true value in such environments.

1. INTRODUCTION
Database systems typically offer access control as the means to

restrict access to sensitive data. This mechanism protects the pri-
vacy of sensitive information provided data is accessedusing the in-
tended database system interfaces. However, access control, while
important and necessary, is often insufficient. Attacks upon com-
puter systems have shown that information can be compromised
if an unauthorized user simply gains access to the raw database
files, bypassing the database access control mechanism altogether.
For instance, a recent article published in the Toronto Star [14] de-
scribes an incident where a disk containing the records of several
hundred bank customers was being auctioned on eBay. The bank
had inadvertently sold the disk to the eBay re-seller as used equip-
ment without deleting its contents. Drawing upon privacy legisla-
tions and guidelines worldwide, Hippocratic databases also identify
the protection of personal data from unauthorized acquisition as a
vital requirement [1].
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Encryption is a well established technology for protecting sensi-
tive data [7] [22] [24]. Unfortunately, the integration of existing
encryption techniques with database systems causes undesirable
performance degradation. For example, if a column of a table con-
taining sensitive information is encrypted, and is used in a query
predicate with a comparison operator, an entire table scan would
be needed to evaluate the query. The reason is that the current en-
cryption techniques do not preserve order and therefore database
indices such as B-tree can no longer be used. Thus the query exe-
cution over encrypted databases can become unacceptably slow.

We present an encryption technique called OPES (Order Preserv-
ing Encryption Scheme) that allows comparison operations to be
directly applied on encrypted data, without decrypting the operands.
Thus, equality and range queries as well as the MAX, MIN, and
COUNT queries can be directly processed over encrypted data.
Similarly, GROUP BY and ORDER BY operations can also be ap-
plied. Only when applying SUM or AVG to a group do the values
need to be decrypted. OPES is also endowed with the following
properties:

� The results of query processing over data encrypted using
OPES are exact. They neither contain any false positives nor
miss any answer tuple. This feature of OPES sharply differ-
entiates it from schemes such as [13] that produce a superset
of answer, necessitating filtering of extraneous tuples in a
rather expensive and complex post-processing step.

� OPES handles updates gracefully. A value in a column can
be modified or a new value can be inserted in a column with-
out requiring changes in the encryption of other values.

� OPES can easily be integrated with existing database sys-
tems as it has been designed to work with the existing index-
ing structures such as B-trees. The fact that the database is
encrypted can be made transparent to the applications.

Measurements from an implementation of OPES in DB2 show that
the time and space overhead of OPES are reasonable for it to be
deployed in real systems.

1.1 Estimation Exposure
The security of an encryption scheme is conventionally assessed

by analyzing whether an adversary can find the key used for en-
cryption. See [22] [24] for a categorization of different levels of
attacks against a cryptosystem.

When dealing with sensitive numeric data, an adversary does
not have to determine the exact data valuep corresponding to an
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Figure 1: Transparentencryption in the “trusted database soft-
ware with vulnerable storage” setting.

encrypted valuec; a breach may occur if the adversary succeeds
in obtaining a tight estimate ofp. For a numeric domainP , if
an adversary can estimate withc% confidence that a data value
p lies within the interval[p1; p2] then the interval width(p2 �
p1)=domain-width(P ) defines the amount of estimation exposure
atc% confidence level.

Clearly, any order-preserving encryption scheme is vulnerable
to tight estimation exposure if the adversary can choose any num-
ber of unencrypted (encrypted) values of his liking and encrypt
(decrypt) them into their corresponding encrypted (unencrypted)
values. Similarly, any order-preserving encryption is not secure
against tight estimation exposure if the adversary can guess the do-
main and knows the distribution of values in that domain.

We consider an application environment where the goal is safety
from an adversary who has access to all (but only) encrypted values
(the so calledciphertext onlyattack [22] [24]), and does not have
any special information about the domain. We will particularly fo-
cus on robustness against estimation exposure.

1.2 Threat Model
We assume (see Figure 1):

� The storage system used by the database software is vulnera-
ble to compromise.While current database systems typically
perform their own storage management, the storage system
remains part of the operating system. Attacks against storage
could be performed by accessing database files following a
path other than through the database software, or in the ex-
treme, by physical removal of the storage media.

� The database software is trusted.We trust the database
software to transform query constants into their encrypted
values and decrypt the query results. Similarly, we assume
that an adversary does not have access to the values in the
memory of the database software.

� All disk-resident data is encrypted.In addition to the data
values, the database software also encrypts schema infor-
mation such as table and column names, metadata such as

column statistics, as well as values written to recovery logs.
Otherwise, an adversary may be able to use this information
to guess data distributions.

1.3 Pedagogical Assumptions and Notations
The focus of this paper is on developing order-preserving en-

cryption techniques for numeric values and assumes conventional
encryption [22] [24] for other data types as well as for encrypting
information such as schema names and metadata. We will some-
time refer to unencrypted data values as plaintext. Similarly, en-
crypted values will also be referred to as ciphertext.

We will assume that the database consists of a single table, which
in turn consists of a single column. The domain of the column will
be initially assumed to be a subset of integer values,[pmin; pmax).
The extension for real values is given later in the paper.

Assume the database~P consists of a total ofj ~P j plaintext values.
Out of these,jP j values are unique, which will be represented as
P = p1; p2; : : : ; pjP j , pi < pi+1 The corresponding encrypted
values will be represented asC = c1; c2; : : : ; cjP j, ci < ci+1.

Duplicates can sometimes be used to guess the distribution of a
domain, particularly if the distribution is highly skewed. A closely
related problem is that if the number of distinct values is small (e.g.,
day of the month), it is easy to guess the domain. We will ini-
tially assume that the domain to be encrypted either does not con-
tain many duplicates or contains a distribution that can withstand a
duplicate attack, and discuss the handling of duplicates later in the
paper.

1.4 Paper Layout
The rest of the paper is organized as follows. We first discuss re-

lated work in Section 2. We give an overview of OPES in Section 3.
The next three sections give details of the three main phases of
OPES. We describe extensions to handle real values and duplicates
in Section 7. In Section 8, we study the quality of the encryption
produced by OPES and present performance measurements from a
DB2 implementation. We conclude with a summary and directions
for future work in Section 9.

2. RELATED WORK

Summation of Random Numbers A simple scheme has been
proposed in [3] that computes the encrypted valuec of integerp
asc =

Pp

j=0 Rj, whereRj is the jth value generated by a se-
cure pseudo-random number generatorR. Unfortunately, the cost
of makingp calls toR for encrypting or decryptingc can be pro-
hibitive for large values ofp.

A more serious problem is the vulnerability to estimation ex-
posure. Since the expected gap between two encrypted values is
proportional to the gap between the corresponding plaintext val-
ues, the nature of the plaintext distribution can be inferred from the
encrypted values. Figure 2 shows the distributions of encrypted val-
ues obtained using this scheme for data values sampled from two
different distributions: Uniform and Gaussian. In each case, once
both the input and encrypted distributions are scaled to be between
0 and 1, the number of points in each bucket is almost identical for
the plaintext and encrypted distributions. Thus the percentile of a
point in the encrypted distribution is also identical to its percentile
in the plaintext distribution.
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Figure 2: Summation of random numbers: Distribution of en-
crypted values tracks the input distribution.

Polynomial Functions In [12], a sequence of strictly increasing
polynomial functions is used for encrypting integer values while
preserving their order. These polynomial functions can simply be
of the first or second order, with coefficients generated from the en-
cryption key. An integer value is encrypted by applying the func-
tions in such a way that the output of a function becomes the input
of the next function. Correspondingly, an encrypted value is de-
crypted by solving these functions in reverse order. However, this
encryption method does not take the input distribution into account.
Therefore the shape of the distribution of encrypted values depends
on the shape of the input distribution, as shown in Figure 3 for the
encryption function given in Example 10 in [12]. This illustration
suggests that this scheme may reveal information about the input
distribution, which can be exploited.

Bucketing In [13], tuples are encrypted using conventional en-
cryption, but an additional bucket id is created for each attribute
value. This bucket id, which represents the partition to which the
unencrypted value belongs, can be indexed. The constants ap-
pearing in a query are replaced by their corresponding bucket ids.
Clearly, the result of a query will contain false hits that must be
removed in a post-processing step after decrypting the tuples re-
turned by the query. This filtering can be quite complex since the
bucket ids may have been used in joins, subqueries, etc. The num-
ber of false hits depends on the width of the partitions involved. It is
shown in [13] that the post-processing overhead can become exces-
sive if a coarse partitioning is used for bucketization. On the other
hand, a fine partitioning makes the scheme vulnerable to estimation
exposure, particularly if an equi-width partitioning is used.

It has been pointed out in [6] that the indexes proposed in [13]
can open the door to interference and linking attacks. Instead, they
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Figure 3: Polynomial functions: Encryption of different input
distributions look different.

build a B-tree over plaintext values, but then encrypt every tuple
and the B-tree at the node level using conventional encryption. The
advantage of this approach is that the content of B-tree is not visible
to an untrusted database server. The disadvantage is that the B-tree
traversal can now be performed by the front-end only by execut-
ing a sequence of queries that retrieve tree nodes at progressively
deeper level.

Other Relevant Work Rivest et al. [21] suggest that the limit on
manipulating encrypted data arises from the choice of encryption
functions used, and there exist encryption functions that permit en-
crypted data to be operated on directly for many sets of interesting
operations. They call these functions “privacy homomorphisms”.
The focus of [21] and the subsequent follow-up work [2] [8] [9]
has been on designing privacy homomorphisms to enable arith-
metic on encrypted data, but the comparison operations were not
investigated in this line of research.

In [10], a simple but effective scheme has been proposed to en-
crypt a look-up directory consisting of (key, value) pairs. The goal
is to allow the corresponding value to be retrieved if and only if
a valid key is provided. The essential idea is to encrypt complete
tuples, but associate with every tuple the one-way hash value of its
key. Thus, no tuple will be retrieved if an invalid key is presented.
Answering range queries was not a goal of this system.

In [23], interesting schemes are proposed to support keyword
searches over an encrypted text repository. The driving application
for this work is the efficient retrieval of encrypted email messages.
Naturally, they do not discuss relational queries and it is not clear
how their techniques can be adapted for relational databases.

In [4], a smart card with encryption and query processing ca-
pabilities is used to ensure the authorized and secure retrieval of
encrypted data stored on untrusted servers. Encryption keys are
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Figure 4: Illustrating OPES.

maintained on the smart card. The smart card can translate exact
match queries into equivalent queries over encrypted data. How-
ever, range queries require creating a disjunction for every pos-
sible value in the range, which is infeasible for real data values.
The smart card implementation could benefit from our encryption
scheme in that range queries could be translated into equivalent
queries over encrypted data.

In [25], the security and tamper resistance of a database stored
on a smart card is explored. They consider snooping attacks for
secrecy, and spoofing, splicing, and replay attacks for tamper resis-
tance. Retrieval performance is not the focus of their work and it
is not clear how much of their techniques apply to general purpose
databases not stored in specialized devices.

Amongst commercial database products, Oracle 8i allows values
in any of the columns of a table to be encrypted [18]. However,
the encrypted column can no longer participate in indexing as the
encryption is not order-preserving.

Related work also includes research on order-preserving hashing
[5] [11]. However, protecting the hash values from cryptanalysis is
not the concern of this body of work. Similarly, the construction of
original values from the hash values is not required.

3. PROPOSED ORDER-PRESERVING EN-
CRYPTION SCHEME

The basic idea of OPES is to take as input a user-provided tar-
get distribution and transform the plaintext values in such a way
that the transformation preserves the order while the transformed
values follow the target distribution. Figure 4 shows the result of

running OPES with different input distributions and the same target
distribution. Notice that the distribution of encrypted values looks
identical in both 4(a) and 4(b), even though the input distributions
were very different.

3.1 Intuition
To understand the intuition behind OPES algorithm, consider the

following encryption scheme:
GeneratejP j unique values from a user-specified target distri-

bution and sort them into a tableT . The encrypted valueci of pi
is then given byci = T [i]. That is, theith plaintext value in the
sorted list ofjP j plaintext values is encrypted into theith value in
the sorted list ofjP j values obtained from the target distribution.
The decryption ofci requires a lookup into a reverse map. HereT

is the encryption key that must be kept secret.
Clearly, this scheme does not reveal any information about the

original values apart from the order, since the encrypted values
were generated solely from the user-specified target distribution,
without using any information from the original distribution. Even
if an adversary has all of the encrypted values, he cannot inferT

from those values. By appropriately choosing target distribution,
the adversary can be forced to make large estimation errors.

This simple scheme, while instructive, has the following short-
comings for it to be used for encrypting large databases:

� The size of encryption key is twice as large as the number of
unique values in the database.

� Updates are problematic. When adding a new valuep, where
pi < p < pi+1, we will need to re-encrypt allpj ; j > i.1

OPES has been designed such that the result of encryption is sta-
tistically indistinguishable from the one obtained using the above
scheme, thereby providing the same level of security, while remov-
ing its shortcomings.

3.2 Overview of OPES
When encrypting a given databaseP , OPES makes use of all

the plaintext values currently presentP ,2 and also uses a database
of sampled values from the target distribution. Only the encrypted
databaseC is stored on disk. At the same time, OPES also creates
some auxiliary informationK, which the database system uses to
decrypt encoded values or encrypt new values. ThusK serves the
function of the encryption key. This auxiliary information is kept
encrypted using conventional encryption techniques.

OPES works in three stages:

1. Model: The input and target distributions are modeled as
piece-wise linear splines.

2. Flatten: The plaintext databaseP is transformed into a “flat”
databaseF such that the values inF are uniformly distributed.

1It is possible to avoid immediate re-encryption by choosing an
encrypted value forp in the interval (ci; ci+1), but T would still
need updating. Moreover, there might be cases whereci+1 = ci+1
and therefore inserting a new value will require re-encryption of
existing values.
Note that the encryption schemeci = T [pi] circumvents the up-
date problem. But now the size of the key becomes the size of the
domain. It is also vulnerable to percentile exposure, as discussed
earlier in Section 2.
2If an installation is creating a new database, the database admin-
istrator can provide a sample of expected values.



3. Transform: The flat databaseF is transformed into the ci-
pher databaseC such that the values inC are distributed
according to the target distribution.

Note that

pi < pj =) fi < fj =) ci < cj:

We give details of the three stages in Sections 4, 5 and 6 respec-
tively.

4. MODELING THE DISTRIBUTIONS
Techniques for modeling data distributions have been studied ex-

tensively in the database literature in the context of estimating the
costs of different query execution plans. As stated in [16], there are
two broad categories of techniques: histogram-based that capture
statistical information about a distribution by means of counters
for a specified number of buckets, and parametric that approximate
a distribution by fitting the parameters of a given type of function.
We experimented with several histogram-based techniques [15], in-
cluding equi-depth, equi-width, and wavelet-based methods, but
found that the flattened values obtained were not uniformly dis-
tributed unless the number of buckets was selected to be unreason-
ably large. The main source of the problem was the assumption that
the distribution is uniform within each bucket. The parametric are
suitable for closed-form distributions but lead to poor estimations
for irregular distributions [16], which we expect to be the norm in
our application.

We, therefore, resorted to a combination of histogram-based and
parametric techniques. As in [16], we first partition the data values
into buckets and then model the distribution within each bucket as
a linear spline. The spline for a bucket[pl; ph) is simply the line
connecting the densities at the two end-points of the bucket.3

We also allow the width of value ranges to vary across buck-
ets. However, unlike [16], we do not have a given fixed number
of buckets. Rather, we use the minimum description length (MDL)
principle [20] to determine the number of buckets.

4.1 Bucket Boundaries
The bucket boundaries are determined in two phases:4

1. Growth phase.The space is recursively split into finer par-
titions. Each partitioning of a bucket reduces the maximum
deviation from the density function within the newly formed
buckets when compared to their parent bucket.

2. Prune phase.Some buckets are pruned (merged into big-
ger buckets). The idea is to minimize the number of buckets
and yet have the values within buckets after mapping be uni-
formly distributed. We use the MDL principle to obtain this
balance.

The details of these two phases are discussed next.

3In [16], the splines are not continuous across buckets; they use lin-
ear regression over data values present in a bucket for determining
the spline. However, such discontinuities may causeundesirable
breaks in the uniformity when we flatten plaintext values.
4This procedure is reminiscent of the procedure for building deci-
sion tree classifiers, and in particular SLIQ [17], but the details are
quite different.

4.2 Growth Phase
We are given a bucket[pl; ph), with h � l � 1 (sorted) points:

fpl+1; pl+2; : : : ; ph�1g. We first find the linear spline for this
bucket. Next, for each pointps in the bucket, we compute its ex-
pected value if the points were distributed according to the density
distribution modeled by the linear spline (i.e., the expected value
of the (s � l)th smallest value in a set ofh � l � 1 random val-
ues drawn from the distribution). We then split the bucket at the
point that has the largest deviation from its expected value (break-
ing ties arbitrarily). We stop splitting when the number of points in
a bucket is below some threshold, say, 10.

4.3 Prune Phase
The MDL principle [20] states that the best model for encoding

data is the one that minimizes the sum of the cost of describing the
model and the cost of describing the data in terms of that model.
For a given bucket[pl; ph), the local benefit LB of splitting this
bucket at a pointps is given by

LB(pl; ph) = DataCost(pl; ph)�DataCost(pl; ps)

�DataCost(ps; ph)� IncrModelCost

where DataCost(p1; p2) gives the cost of describing the data in the
interval [p1; p2) and IncrModelCost is the increase in modeling
cost due to the partitioning of a bucket into two buckets.

The global benefit GB of splitting this bucket atps takes into
account the benefit of further recursive splits:

GB(pl; ph) = LB(pl; ph) + GB(pl; ps) + GB(ps; ph):

If GB > 0, the split is retained; otherwise, the split atps and
all recursive splits within[pl; ph) are pruned. Note that we do this
computation bottom up, and therefore the cost is linear in the num-
ber of splits.5

We now provide the functions for the computation of DataCost
and IncrModelCost. Assume momentarily the existence of a map-
pingM that transforms values sampled from a linear density func-
tion into a set of uniformly distributed values. We specifyM in
the next section. As we shall see,M will have two parameters: a
quadratic coefficient and a scale factor.

4.3.1 DataCost
We want to flatten a given data distribution into a uniform distri-

bution. So, given a bucket, we first flatten the values present in the
bucket using the mappingM , and then compute the cost of encod-
ing the deviations from uniformity for the mapped values.6

Let the set of data valuesfpl; pl+1; : : : ; ph�1g be mapped into
ffl; fl+1; : : : ; fh�1g usingM . The encoding of a valuepi 2

5One might wonder why we did not combine pruning with the
growth phase and stop splitting a bucket as soon as the local benefit
became zero or negative. The reason is that the benefit of partition-
ing may start showing only at a finer granularity, and it will often
be the case that the local benefit is less than zero even though the
global benefit is much greater than zero.
6Note that our implementation encodes only the statistically sig-
nificant deviations to avoid overfitting, i.e., rather than a single ex-
pected value, we consider the range of values that would occur with
a uniform distribution, and only encode values that are outside this
range. We omit this detail for brevity.



[pl; ph) would cost

Cost(pi) = log jfi � E(i)j;

whereE(i), the expected value of theith number assuming unifor-
mity, is given by

E(i) = fl +
i� l

h� l
(fh � fl):

The cost of encoding all the values in the interval[pl; ph) is then
given by

DataCost(pl; ph) =
h�1X
i=l+1

Cost(pi):

4.3.2 IncrModelCost
If we havem buckets, we need to storem + 1 boundaries,m

quadratic coefficients, andm scale factors. Thus the model cost
will be (3m+ 1)� 32, assuming 32 bits for each of these values.
More importantly, the cost of an additional bucket

IncrModelCost= 32� 3 = 96:

5. FLATTEN
The overall idea of the flatten stage is to map a plaintext bucketB

into a bucketBf in the flattened space in such a way that the length
of Bf is proportional to the number of values present inB. Thus,
the dense plaintext buckets will be stretched and the sparse buckets
will be compressed. The values within a bucket are mapped in
such a way that the density will be uniform in the flattened bucket.
Since the densities are uniform both inter-bucket and intra-bucket,
the values in the flattened database will be uniformly distributed.
We specify next a mapping function that accomplishes these goals.

5.1 Mapping Function

OBSERVATION 1. If a distribution over[0; ph) has the density
functionqp + r, wherep 2 [0; ph), then for any constantz > 0,
the mapping function

M(p) = z(
q

2r
p2 + p)

will yield a uniformly distributed set of values. 2

This follows from the fact that the slope of the mapping function
at any pointp is proportional to the density atp:7

dM

dp
=

z

r
(qp + r)

/ qp+ r:

We will refer tos := q=2r as the quadratic coefficient. Thus

M(p) = z(sp2 + p)

A different scale factorz is used for different buckets, to make
the inter-bucket density uniform as well. We describe next how the
scale factors are computed.
7An equivalent way to think about this is that the space aroundp,
say fromp � 1 to p + 1 is mapped to a length of

M(p+ 1)�M(p� 1) =
2z

r
(qp + r) / qp + r:

5.2 Scale Factor
We need to find the scale factorz, one for each bucketB such

that:

1. Two distinct values in the plaintext will always map to two
distinct values in the flattened space, thereby ensuring incre-
mental updatability.

2. Each bucket is mapped to a space proportional to the number
of pointsn in that bucket, i.e., ifw is the width of the bucket
andwf =M(w) is the width after flattening, thenwf / n.

The first constraint can be written as:

8p 2 [0; w) : M(p+ 1)�M(p) � 2:

The 2 in the RHS (instead of 1) ensures two adjacent plaintext val-
ues will be at least 2 apart in the flattened space. As we will explain
in Section 5.5, this extra separation makes encryption tolerant to
rounding errors in floating point calculations. ExpandingM , we
get

8p 2 [0; w) : z � 2=(s(2p+ 1) + 1):

The largest value of2=(s(2p + 1) + 1) will be atp = 0 if s � 0,
and atp = w� 1 otherwise. Therefore we get

ẑ =

�
2; s � 0
2=(1 + s(2w� 1)); s < 0

whereẑ denotes the minimum value ofz that will satisfy the first
constraint.

To satisfy the second constraint, we want

wf = Kn

for all the buckets. Define

ŵf = ẑ(sw2 + w)

as the minimum width for each bucket, and define

K = max
h
ŵf
i

i
; i = 1; : : : ;m:

Then the scale factors

z =
Kn

sw2 + w

will satisfy both the desired constraints, sincez > ẑ, andwf =

z(sw2 +w) = Kn.

5.3 Encryption Key
Let us briefly review what we have at this stage. The model-

ing phase has yielded a set of bucketsf B1; : : : ;Bm g. For each
bucket, we also have a mapping functionM , characterized by two
parameters: the quadratic coefficients and the scale factorz. We
save them + 1 bucket boundaries, them quadratic coefficients,
and them scale factors in a data structureKf . The database sys-
tem usesKf to flatten (encrypt) new plaintext values, and also to
unflatten (decrypt) a flattened value. ThusKf serves the function
of the encryption key.

Note thatKf is computed once at the time of initial encryption
of the database. As the database obtains new values,Kf is used to
encrypt them, but it is not updated, which endows OPES with the
incremental updatability property.8

8In order to encrypt stray values outside of the current



5.4 Mapping a Plaintext Value into a Flat Value
Represent the domains of the input databaseP and the flat database

F as[pmin; pmax) and[fmin; fmax) respectively. Note that

fmax = fmin +
mX
i=1

wf
i

wherewf
i = Mi(wi). Recall thatwi is the length of plaintext

bucketBi, andwf
i the length of the corresponding flat bucket.

To flatten a plaintext valuep, we first determine the bucketBi

into whichp falls, using the information about the bucket bound-
aries saved inKf . Now p is mapped into the flat valuef using the
equation:

f = fmin +
i�1X
j=1

wf
j +Mi(p� pmin �

i�1X
j=1

wj):

5.5 Mapping a Flat Value into a Plaintext Value
We can rewrite the previous equation as

p = pmin +
i�1X
j=1

wj +M�1
i (f � fmin �

i�1X
j=1

wf
j )

where

M�1(f) =
�z �

p
z2 + 4zsf

2zs

andz ands represent respectively the scale factor and the quadratic
coefficient of the mapping functionM .9 So, unflattening requires
using the information inKf to determine the flat bucketBf

i in
which the given flat valuef lies and then applyingM�1. Out of
the two possible values forM�1, only one will be within the bucket
boundary.

Note thatM(p), as well asM�1(f), will usually not be inte-
gers values, and are rounded to the nearest integer. To remove the
possibility of errors due to rounding floating point calculations, we
verify whetherM�1(f) = p immediately after computingM(p).
If it turns out thatM�1(f) is actually rounded top � 1, we en-
cryptp asf + 1 instead off . Since we ensured that two adjacent
plaintext values are at least 2 apart in the flattened space when com-
puting the scale factors,M�1(f + 1) will decrypt top and not to
p+ 1. Similarly, if M�1(f) = p+ 1, we encryptp asf � 1.

range [pmin; pmax), we create two special buckets,B0 =
[MINVAL ; pmin) andBm+1 = [pmax;MAXVAL ] where [MIN-
VAL, MAXVAL] is the domain of the input distribution. Since
these buckets initially do not contain any values, we estimate the
s andz parameters for them. The quadratic coefficients for the
buckets is set to 0. To estimate the scale factor forB0, we extrap-
olate the scaling used for the two closest points inB1 intoB0 and
definez0 to be(f2 � f1)=(p2 � p1). Similarly, the scale factor for
Bm+1 is estimated using the two closest values in bucketsBm To
simplify exposition, the rest of the paper ignores the existence of
these special buckets.
9When jsf j is small relative tojzj, the computation of�z +p
z2 + 4zsf will result in loss of precision whenz is positive

(and similarly�z �
p
z2 + 4zsf will lose precision whenz is

negative). Thus we use the alternate formulation [19]

M�1(f) =
�2f

�z �
p
z2 + 4zsf

in those cases.

1. Compute the buckets
used to transform the plain-
text distribution into the flat-
tened distribution

2. From the target distri-
bution, compute the buckets
for the flattened distribution
B̂f .
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Figure 5: Scaling the target distribution.

6. TRANSFORM
The transform stage is almost a mirror image of the flatten stage.

Given a uniformly distributed set of flattened values, we want to
map them into the target distribution. An equivalent way of think-
ing about the problem is that we want to flatten the target distribu-
tion into a uniform distribution, while ensuring that the distribution
so obtained “lines-up” with the uniform distribution yielded by flat-
tening the plaintext distribution.

Figure 5 portrays this process. We already have on hand the
buckets for the plain text distribution (Step 1). We bucketize the
target distribution, independent of the bucketization of the plain-
text distribution (Step 2). We then scale the target distribution (and
the flattened target distribution) in such a way that the width of the
uniform distribution generated by flattening the scaled target dis-
tribution becomes equal to the width of the uniform distribution
generated by flattening the plaintext distribution (Step 3).



We will henceforth refer to the scaled target distribution as the
cipher distribution.

6.1 Scaling the Target Distribution
The modeling of target distribution yields a set of bucketsf

Bt
1; : : : ;B

t
k g. For every bucketBt of lengthwt, we also get

the mapping functionM t and the associated parametersst andzt.
For computing the scale factorzt for each bucket, we use a proce-
dure similar to the one discussed in Section 5.2, except that the first
constraint is flipped. We now need to ensure that two adjacent val-
ues in the flat space map to two distinct values in the target space
(whereas earlier we had to ensure that two adjacent values in the
plaintext space mapped to two distinct values in the flat space).

An analysis similar to Section 5.2 yields

zt =
Ktnt

st(wt)2 + wt

where

Kt = min

"
ẑti(s

t
i(w

t
i)
2 +wt

i)

nti

#
; i = 1; : : : ; k

and

ẑt =

�
0:5=(1 + st(2wt � 1)); st > 0
0:5; st � 0:

Let B̂f be the bucket in the flat space corresponding to the bucket
Bt, with lengthŵf . We also have bucketsf Bf

1 ; : : : ;B
f
m g from

flattening the plaintext distribution. As before, let bucketBf have
lengthwf . We want the range of the two flat distributions to be
equal. So we define the matching factorL to be

L =

 
mX
i=1

wf
i

!
=

 
kX

i=1

ŵf
i

!
:

We then scale both the target bucketsBt and the flattened target
bucketsB̂f by a factor ofL. So the length of the cipher bucket
Bc corresponding to the target bucketBt is given bywc

i = Lwt
i

and the length of the scaled flattened target bucket�Bf is given by
�wf = Lŵf .

6.2 Mapping Function
We now specify the functionMc for mapping values from the

bucketBc to the flat bucket�Bf . The quadratic coefficient forMc

is determined assc = st=L, and the scale factorzc is set tozt, for
reasons explained next.

Recall thatst := qt=2rt, wherent = qtx + rt is the linear
approximation of the density in the bucketBt. When we expand
the domain by a factor ofL, qt=rt is reduced by a factor ofL.
Thereforesc = st=L.

Now zc should ensure thatMc(wc) = �wc. Settingzc = zt

provides this property since

Mc(wc) = zc(sc(wc)2 +wc)

= zt((st=L)(Lwt)2 + Lwt)

= LM t(wt)

= Lŵf

= �wf

6.3 Mapping Flat Values to Cipher Values
We save the bucket boundaries in the cipher space in the data

structureKc. For every bucket, we also save the quadratic coeffi-
cientsc and the scale factorzc.

A flat valuef from the bucket�Bf
i can now be mapped into a

cipher valuec using the equation

c = cmin +
i�1X
j=1

wc
j + (Mc

i )
�1(f � fmin �

i�1X
j=1

�wf
i )

where

(Mc)�1(f) =
�z �

p
z2 + 4szf

2zs
:

Only one of the two possible values will lie within the cipher bucket,
and we round the value returned by(Mc)�1.

A cipher valuec from the bucketBc
i is mapped into a flat value

f using the equation

f = fmin +
i�1X
j=1

�wf
j +Mc

i (c� cmin�

i�1X
j=1

wc
j):

6.4 Space Overhead
The size of the ciphertext depends on the skew in the plaintext

and target distributions. Definegpmin to be the smallest gap between
sorted values in the plaintext, andgpmax as the largest gap. Simi-
larly, let gtmin andgtmax be the smallest and largest gaps in the tar-
get distribution. DefineGp = gpmax=g

p
min

, andGt = gtmax=g
t
min.

Then the additional number of bits needed by the ciphertext in the
worst case can be approximated aslogGp + logGt. Equivalently,
an upper bound forcmax � cmin is given byGp �Gt � (pmax �

pmin).
To see why this is the case, consider that when flattening, we

need to make all the gaps equal. If almost all the gaps in the plain-
text are close togpmin while only a few are close togpmax, we will
need to increase each of the former gaps togpmax, resulting in a size
increase ofgpmax=g

p
min. Similarly, there can be a size increase of

tpmax=t
p
min when transforming the data if most of the target gaps

are close totpmax.
Note that we can explicitly controlGt since we choose the target

distribution. WhileGp is outside our control, we expect thatGp �

Gt will be substantially less than232, i.e., we will need at most an
additional 4 bytes for the ciphertext than for the plaintext.

7. EXTENSIONS

7.1 Real Values
An IEEE 754 single precision floating point number is repre-

sented in 32 bits. The interpretation of positive floating point val-
ues simply as 32-bit integers preserves order. Thus, OPES can be
directly used for encrypting positive floating point values.

Negative floating point values, however, yield an inverse order
when interpreted as integers. Nevertheless, their order can be main-
tained by subtracting negative values from the largest negative (�231).
The query rewriting module (Figure 1) makes this adjustment in the
incoming query constants and the adjustment is undone before re-
turning the query results.

A similar scheme is used for encrypting 64-bit double precision
floating point values.



7.2 Duplicates
An adversary can use duplicates to guess the distribution of a

domain, particularly if the distribution is highly skewed. Similarly,
if the number of distinct values in a domain is small (e.g., day of
the month), it can be used to guess the domain. The solution for
both these problems is to use ahomophonicscheme [22] in which
a given plaintext value is mapped to a range of encrypted values.

The basic idea is to modify the flatten stage as follows. First,
when computing the scale factors for each bucket using the con-
straint that the bucket should map to a space proportional to the
number of points in the bucket, we include duplicates in the num-
ber of points. Thus, regions where duplicates are prevalent will be
spread out proportionately, and adjacent plaintext values in such
regions will be mapped to flattened values that are relatively far
apart.

Suppose that using our current algorithm, a plaintext valuep

maps into a valuef in the flat space, andp+1 maps intof 0. When
encryptingp, we now randomly choose a value from the interval
[f;f 0). Thus the encrypted values ofp will be uniformly spread
in the interval[f; f 0). Combined with the intra-bucket uniformity
generated by the linear splines and the inter-bucket uniformity from
the scale factors, this will result in the flattened distribution being
uniform even if the plaintext distribution had a skewed distribution
of duplicates. This is the only change to the algorithm – having
hidden the duplicates in the flatten stage, no change is necessary in
the transform stage.

Selections on data encrypted using this extension can be per-
formed by transforming predicates, e.g., converting equality against
a constant into a range predicate. But some other operations such
as equijoin cannot be directly performed. This might be acceptable
in applications in which numeric attributes are used only in selec-
tions. For example, consider a hospital database used for medical
research. Patient data will typically be joined on attributes such
as patient-id that can be encrypted with conventional encryption.
However, numeric attributes such as age and income may strictly
be used in range predicates.

8. EVALUATION
In this section, we study empirically the following questions:

1. Distribution of Encrypted Values: How indistinguishable is
the output of OPES from the target distribution?

2. Percentile Exposure: How susceptible to the percentile expo-
sure are the encrypted values generated by OPES?

3. Incremental Updatability : Does OPES gracefully handles
updates to the database?

4. Key Size: How big an encryption key does OPES need?

5. Time Overhead: What is the performance impact of integrat-
ing OPES in a database system?

8.1 Experimental Setup
The experiments were conducted by implementing OPES over

DB2 Version 7. The algorithms were implemented in Java, except
for the high precision arithmetic that was implemented in C++ (us-
ing 80-bit long doubles). The experiments were run using version
1.4.1 of the Java VM on a Microsoft Windows 2000 workstation
with a 1GHz Intel processor and 512 MB of memory.

8.2 Datasets
We used the following datasets in our experiments:

� Census:This dataset from the UCI KDD archive (http://kdd.
ics.uci.edu/databases/census-income/census-income.html)con-
tains the PUMS census data (about 30,000 records). We used
the income field in our experiments.

� Gaussian: The data consists of integers picked randomly
from a Gaussian distribution with a mean of 0 and a stan-
dard deviation of MAXINT/10.

� Zipf: The data consists of integers picked randomly from a
Zipf distribution with a maximum value of MAXINT, and
skew (�) of 0.5.

� Uniform: The data consists of integers picked randomly from
a Uniform distribution between -MAXINT and MAXINT.

Our default dataset size for the synthetic datasets was 1 million
values. The plaintext values were 32-bit integers. Both flattened
and final ciphertext values were 64-bit long.

8.3 Distribution of Encrypted Values
We tested whether it is possible to statistically distinguish be-

tween the output of OPES and the target distribution by applying
the Kolmogorov-Smirnov test used for this purpose. The Kolmogorov-
Smirnov test answers the following question [19]:

Can we disprove, to a certain required level of signifi-
cance, the null hypothesis that two data sets are drawn
from the same distribution function?

We conservatively try to disprove the null hypothesis at a signif-
icance level of 5%, meaning thereby that the distribution of en-
crypted values generated by OPES differs from the chosen target
distribution.10 In addition to the Census data, we used four sizes
for the three synthetic datasets: 10K, 100K, 1M, and 10M values.
For each of these input datasets, we experimented with three target
distributions: Gaussian, Zipf, and Uniform.

We could not disprove the null hypothesis in any of our exper-
iments. In other words, the distribution of encrypted values pro-
duced by OPES was consistent with the target distribution in every
case.

We also checked whether the output of Stage 1 (flatten) can be
distinguished from the Uniform distribution. Again, in every case,
we could not disprove the hypothesis that the distributions were
indistinguishable, implying that flattening successfully masked the
characteristics of the plaintext distribution.

We should mention here that we also experimented with model-
ing input distribution using equi-width and equi-depth histograms
(with the same number of buckets as in our MDL model). When we
applied the Kolmogorov-Smirnov test to check the indistinguisha-
bility of the flattened distributions so obtained from the uniform
distribution, the hypothesis was rejected in every case except when
the input data was itself distributed uniformly. These results reaf-
firmed the value of using the proposed piece-wise linear function
for modeling a density distribution.

10Note that this test is much harsher on OPES than using a stronger
significance level of 1%. If the null hypothesis is rejected at a sig-
nificance level of 5% , it will also be rejected at a significance level
of 1%.



Input Target Change in
distribution distribution Percentile

Census Gaussian 37
Census Zipf 7
Census Uniform 38

Gaussian Zipf 45
Gaussian Uniform 17

Zipf Uniform 44

Figure 6: Average change between the original percentile and
the percentile in the encrypted distribution.

8.4 Percentile Exposure
Figure 6 shows the average change between the original per-

centile and the percentile in the encrypted distribution. For exam-
ple, suppose the plaintext data had a range between 0 and 100, and
the ciphertext had a range between 0 and 1000. Then, a plaintext
value of 10 that was mapped to a ciphertext value of 240 would
have a change ofj10� 24j, or 14 percentile points. Thus, the first
line in the figure states that each value moved on average by 37
percentile points when going from Census to Gaussian. The reason
there is relatively less percentile change when transforming Census
to Zipf is that Census itself is largely Zipfian. Hence by judiciously
choosing a target distribution that is substantially different from
the input data, we can create large change in the percentile values,
which shows the robustness of OPES against percentile exposure.

8.5 Incremental Updatability
For an encryption scheme to be useful in a database system, it

should be able to handle updates gracefully. We have seen that
with OPES a new value can easily be inserted without requiring
changes in the encryption of other values.

Recall that we compute the bucket boundaries and the mapping
functions when the database is encrypted for the first time, and then
do not update them (unless the database administrator decides to
re-encrypt the database afresh). We studied next whether the en-
crypted values remain consistent with the target distribution after
updates. For this experiment, we completely replaced all the data
values with new values, drawn from the same plaintext distribu-
tion. But we did not updateKp orKc. We did this experiment with
all the four types of datasets, and for each of them we considered
Gaussian, Zipf, and Uniform distributions.

Applying the Kolmogorov-Smirnov test again, we found that
even with this 100% replacement, the resulting distributions were
still statistically indistinguishable from the target distributions.

8.6 Key Size
The size of the encryption keyK depends on the number of

buckets needed for partitioning a distribution, the total size being
roughly three times the number of buckets. We found that we did
not need more than 200 buckets for any of our datasets (including
those with 10 million values); for Uniform, the number of buckets
needed was less than 10. Thus, the encryption key can be just a few
KB in size.

8.7 Time Overhead
We used a single column table in these experiments. The rea-

son was that we did not want to mask the overhead of encryp-
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Figure 7: Time per tuple (in milleseconds) required to build the
model.

tion; if we were to use wider tuples with columns that were not
encrypted/decrypted, our overhead would come out to be lower.
The column was indexed.

Figure 7 shows the model building cost for the 3 synthetic distri-
butions, for dataset sizes ranging from 10,000 to 10 million records.
The time increases linearly with the dataset size, and is similar for
all 3 distributions. The total time was less than 4 minutes for 1 mil-
lion records. It is a one-time cost, which can be reduced by using a
sample of the data.

Figure 8 shows the overhead due to encryption of database in-
serts. The encrypted values followed a Zipf distribution, and the
plaintext values followed a Gaussian distribution. The graph shows
the percentage overhead of encrypting and inserting 1 to 10,000
values when compared to the cost of inserting an identical number
of plaintext values, for databases of different sizes (10K to 10M).
Figure 9 shows the absolute times for inserting additional values in
a table having 10 million tuples. Figures 8 and 9 clearly show that
this overhead is negligible.

Figure 10 shows the impact of decryption on the retrieval of
tuples from databases of different sizes. We have also varied the
number of tuples retrieved to study the impact of selectivity. The
encrypted values followed a Zipf distribution, and the plaintext val-
ues followed a Gaussian distribution. The overhead ranges from
around 3% slower for equality predicates to around 50% slower
when selecting 1 million records.

To understand the reason for higher overhead for less selective
queries, note that the decryption time per tuple is constant. Fig-
ure 11 shows the time per tuple to retrievek plaintext tuples from a
table with 10 million tuples, as well as the corresponding time per
tuple to retrieve and decryptk encrypted tuples. DB2 has excellent
performance on sequential I/O, which reduces per record I/O cost
for less selective queries. The percentage overhead due to decryp-
tion, therefore, increases. The absolute numbers, however, are very
reasonable: around 3 micro-seconds to decrypt one value.

9. SUMMARY
With the dramatic increase in the amount of data being collected

and stored in databases, it has become vital to develop effective
techniques for protecting sensitive data from misuse. The access
control mechanisms conventionally used by database systems be-
come helpless if an intruder can get unauthorized access to the
database files. Encryption can be used to provide an extra level of
security. Unfortunately, the use of standard encryption techniques
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for this purpose results in degradation in the performance of the
database system. The main source of the problem is that the stan-
dard techniques do not preserve order and therefore the database
indices such as B-tree can no longer be used for answering range
queries.

We proposed a new order preserving encryption scheme, OPES,
that allows queries with comparison operators to be directly applied
to encrypted numeric columns. Query results neither contain any
false positive nor miss any answer tuple. New values can be added
without triggering changes in the encryption of other values. OPES
is designed to operate in environments in which the intruder can get
access to the encrypted database, but does not have prior informa-
tion such as the distribution of values and cannot encrypt or decrypt
arbitrary values of his choice. In such environments, OPES is ro-
bust against an adversary being able to obtain a tight estimate of an
encrypted value. The measurements from an implementation over
DB2 shows that the performance overhead of OPES on query pro-
cessing is small and reasonable for it to be deployed in production
environments.

In the future, we plan to study the encryption of non-numeric
data such as variable length strings. We also plan to investigate
system issues such as key management and the impact of encryp-
tion on query plans and query optimization.
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