
Bkd-tree: A Dynamic Scalable kd-tree

Octavian Procopiuc
���

, Pankaj K. Agarwal
�����

,
Lars Arge

�������
, and Jeffrey Scott Vitter

���

	
Department of Computer Science, Duke University

Durham, NC 27708, USA

Department of Computer Science, Purdue University

West Lafayette, IN 47907, USA

Abstract. In this paper we propose a new data structure, called the Bkd-tree, for
indexing large multi-dimensional point data sets. The Bkd-tree is an I/O-efficient
dynamic data structure based on the kd-tree. We present the results of an extensive
experimental study showing that unlike previous attempts on making external
versions of the kd-tree dynamic, the Bkd-tree maintains its high space utilization
and excellent query and update performance regardless of the number of updates
performed on it.

1 Introduction

The problem of indexing multi-dimensional point data sets arises in many applications
and has been extensively studied. Numerous structures have been developed, high-
lighting the difficulty of optimizing multiple interrelated requirements that such multi-
dimensional indexes must satisfy. More precisely, an efficient index must have high
space utilization and be able to process queries fast, and these two properties should
be maintained under a significant load of updates. At the same time, updates must also
be processed quickly, which means that the structure should change as little as possible
during insertions and deletions. This makes it hard to maintain good space utilization
and query performance over time. Consequently, the quality of most indexing structures
deteriorates as a large number of updates are performed on them, and the problem of
handling massive update loads while maintaining high space utilization and low query
response time has been recognized as an important research problem [9].
�

Supported by the National Science Foundation through research grant EIA–9870734 and by
the Army Research Office through MURI grant DAAH04–96–1–0013. Part of this work was
done while visiting BRICS, University of Aarhus, Denmark. Email: tavi@cs.duke.edu

���
Supported by Army Research Office MURI grant DAAH04–96–1–0013, by a Sloan fellow-
ship, by NSF grants ITR–333–1050, EIA–9870724 and CCR–9732787 and by a grant from
the U.S.-Israeli Binational Science Foundation. Email: pankaj@cs.duke.edu

�
�
�
Supported in part by the National Science Foundation through ESS grant EIA–9870734, RI
grant EIA–9972879 and CAREER grant CCR–9984099. Part of this work was done while
visiting BRICS, University of Aarhus, Denmark. Email: large@cs.duke.edu�
Supported in part by the National Science Foundation through research grants CCR–9877133
and EIA–9870734 and by the Army Research Office through MURI grant DAAH04–96–1–
0013. Part of this work was done while visiting BRICS, University of Aarhus, Denmark. Part
of this work was done while at Duke University. Email: jsv@purdue.edu



In this paper we propose a new data structure, called the Bkd-tree, that maintains
its high space utilization and excellent query and update performance regardless of the
number of updates performed on it. The Bkd-tree is based on a well-known extensions
of the kd-tree, called the K-D-B-tree [22], and on the so-called logarithmic method for
making a static structure dynamic. As we show through extensive experimental studies,
the Bkd-tree is able to achieve the almost 100% space utilization and the fast query
processing of a static K-D-B-tree. However, unlike the K-D-B-tree, these properties are
maintained over massive updates.

Previous Results. One of the most fundamental queries in spatial databases is the or-
thogonal range query or window query. In two dimensions a window query is an axis-
aligned rectangle and the objective is to find all points in the database inside the rect-
angle. Numerous practically efficient multi-dimensional point indexing structures sup-
porting window queries have been proposed, most of which can also answer a host of
other query types. They include K-D-B-trees [22], hB-trees [18, 10], and R-trees [13,
6]. If � is the total number of points and � is the number of points that fit in a disk
block, ����� ���	��

���	��� is the theoretical lower bound on the number of I/Os needed
by a linear space index to answer a window query [15]. Here � is the number of points
in the query rectangle. In practice, the above indexing structures often answer queries
in much fewer I/Os. However, their query performance can seriously deteriorate after a
large number of updates. Recently, a number of linear space structures with guaranteed
worst-case efficient query and update performance have been developed (see e.g. [5,
15, 12]). The so-called cross-trees [12] and O-trees [15] answer window queries in the
optimal number of I/Os and can be updated, theoretically, in ��������������� I/Os, but they
are of limited practical interest because a theoretical analysis shows that their average
query performance is close to the worst-case performance. See e.g. [11, 3] for more
complete surveys of multi-dimensional indexing structures. While some of the above
indexing structures are specifically designed for external memory, many of them are
adaptations of structures designed for main memory. In this paper we only focus on
external memory adaptations of the original main memory kd-tree proposed by Bent-
ley [7] (see also [23]).

External-Memory Dynamic kd-trees. While static versions of the kd-tree have been
shown to have excellent query performance in many practical situations, an efficient
dynamic version has proven hard to develop. In the following, we give a brief overview
of the internal memory kd-tree structure and then discuss the two most important pre-
vious approaches for obtaining external memory dynamic kd-trees. In two dimensions,
the kd-tree consists of a height ������� � ��� binary tree representing a recursive decompo-
sition of the plane by means of axis-orthogonal lines partitioning the point set into two
equal subsets.3 On even levels the line is orthogonal to the � -axis, while on odd levels it
is orthogonal to the  -axis . The data points themselves are stored in the leaves, which
form a partition of the plane into disjoint rectangular regions containing one point each.
In the worst case a window query on a kd-tree requires ���"! �#
$�%� time [16], but av-
erage case analysis [24] and experiments have shown that in practice it often performs

3 For simplicity we only consider two-dimensional kd-trees in this paper. However, all our re-
sults work in & dimensions.



much better. One way of performing an insertion on a kd-tree is to first search down the
tree for the leaf corresponding to the rectangle containing the point, and then split this
leaf into two in order to accommodate the new point. While this insertion procedure
runs efficiently in ��������� � �%� time, the kd-tree can grow increasingly unbalanced when
many insertions are performed, resulting in deteriorating query performance. In fact,
the resulting tree is no longer a kd-tree, since the lines in the internal nodes no longer
partition the points into equal sized sets. Unfortunately, while many other tree struc-
tures can be rebalanced efficiently in time proportional to the root-to-leaf path, it can be
shown that in order to rebalance a kd-tree after an insertion, we may need to reorganize
large parts of the tree [23]. Thus it seems hard to efficiently support insertions while
at the same time maintaining good query performance. These considerations show that
the kd-tree is mainly a static data structure with very good window query performance.

One main issue in adapting the kd-tree to external memory is how to assign nodes
to disk blocks in order to obtain good space utilization (use close to ���	� disk blocks)
and good I/O query performance. In the first external memory adaptation of the kd-tree,
called the K-D-B-tree [22], the kd-tree is organized as a B � -tree. More precisely, a K-
D-B-tree is a multi-way tree with all leaves on the same level. Each internal node �
corresponds to a rectangular region and the children of � define a disjoint partition of
that region obtained using a kd-tree partitioning scheme. The points are stored in the
leaves of the tree, and each leaf and internal node is stored in one disk block. Like a
kd-tree, a K-D-B tree can be bulk loaded such that it exhibits excellent space utilization
(uses close to � � � blocks) and answers queries I/O-efficiently (worst case optimally
in ��� � � � �$
 � � � � but often much better in practice). Unfortunately, it also exhibits
the kd-tree insertion characteristics. To insert a point into a K-D-B-tree, a root-to-leaf
path is followed in � � � � � � � � � � � I/Os and after inserting the point in a leaf, the leaf
and possibly other nodes on the path are split just like in a B � -tree. However, unlike the
B � -tree but similar to the kd-tree, the split of an internal node � may result in the need
for splits of several of the subtrees rooted at � ’s children—refer to Figure 1. As a result,
updates can be very inefficient and, maybe more importantly, the space utilization can
decrease dramatically since the split process may generate many near empty leaves [22].

Fig. 1. Splitting a K-D-B-tree node. The outer rectangle corresponds to a node � being split. The
darker regions correspond to children that need to be split recursively when � splits.

Following the K-D-B-tree, several other adaptations of the kd-tree to external mem-
ory have been proposed. An important breakthrough came with the result of Lomet
and Salzberg [18]. Their structure, called the hB-tree (holey brick tree), significantly



improved the update performance over the K-D-B-tree. The better performance was
obtained by only splitting nodes on one root-to-leaf path after an insertion. However,
to be able to do so, the definition of internal nodes had to be changed so that they no
longer corresponded to simple rectangles, but instead to rectangles from which smaller
rectangles have been removed (holey bricks). The hB-tree update algorithm is theoreti-
cally efficient, although quite complicated. As we show in our experimental results, the
hB-tree can still suffer from degenerating space utilization, although to a smaller extent
than the K-D-B-tree (see also [10]). All other attempts at externalizing the kd-tree suffer
from similar inefficiencies.

Our Results. In this paper, we present the first theoretically and practically efficient
dynamic adaptation of the kd-tree to external memory. Our structure, which we call
the Bkd-tree, maintains the high storage utilization and query efficiency of a static K-
D-B-tree, while also supporting updates I/O-efficiently. We have conducted extensive
experiments that show that the Bkd-tree outperforms previous approaches in terms of
storage utilization and update time, while maintaining similar query performance.

The main ingredients used in the design of the Bkd-tree are an I/O-efficient K-
D-B-tree bulk loading algorithm and the so-called logarithmic method for making a
static data structure dynamic [8, 21]. Instead of maintaining one tree and dynamically
rebalance it after an insertion, we maintain a set of ����� � ����� � � static K-D-B-trees
and perform updates by rebuilding a carefully chosen set of the structures at regular
intervals (

�
is the capacity of the memory buffer, in number of points). This way

we maintain the close to 100% space utilization of the static K-D-B-tree. The idea of
maintaining multiple trees in order to speed up insertion time has also been used by
O’Neill et al. [20] and Jagadish et al. [14]. Their structures are used for indexing points
on a single attribute and their techniques cannot be extended to efficiently handle multi-
dimensional points.

To answer a window query using the Bkd-tree, we have to query all the ����� � ����� � �
structures instead of just one, but theoretically we actually maintain the worst case op-
timal ��� � ��� � 
 � � � � query bound. Using an optimal ��� � � � � ����� � � � � I/O bulk
loading algorithm, an insertion is performed in ��� �� ��� � � ��� � � � � ������� � �� � � I/Os amor-
tized. This bound is much smaller than the familiar ����� � ������� B � -tree update bound
for all practical purposes. One disadvantage of the periodical rebuilding is of course
that the update bound varies from update to update (thus the amortized result). How-
ever, queries can still be answered while an update (rebuilding) is being performed,
and (at least theoretically) the update bound can be made worst case using additional
storage [21].

While our Bkd-tree has nice theoretical properties, the main contribution of this
paper is a proof of its practical viability. We present the result of an extensive exper-
imental study of the performance of the Bkd-tree compared to the K-D-B-tree using
both real-life (TIGER) and artificially generated (uniform) data. In addition, we used a
carefully chosen family of data sets to show that both the K-D-B-tree and the hB � -tree
(an improved version of the hB-tree, see [10]) can have poor space utilization (as low
as 28% for the K-D-B-tree and 36% for the hB � -tree), while the space utilization of
the Bkd-tree is always above 99%. At the same time, an insertion in a Bkd-tree can
be up to 100 times faster than an insertion on the K-D-B-tree, in the amortized sense.



The main practical question is of course how the use of ����� � ����� � � structures affects
the query performance. Even though the theoretical worst case efficiency is maintained,
the querying of several structures instead of just one results in an increased number
of random I/Os compared to the more localized I/Os in a single structure. Our experi-
ments show that this makes no or relatively little difference, and thus that the dynamic
Bkd-tree maintains the excellent query performance of the static K-D-B-tree.

Finally, we regard the demonstration of the practical efficiency of the logarithmic
method as an important general contribution of this paper; while the main focus of
the paper is on making the kd-tree dynamic, the logarithmic method is applicable to
any index structure for which an efficient bulk loading algorithm is known. Thus our
results suggest that in general we might be able to make practically efficient static index
structures dynamically efficient using the method.

The rest of this paper is organized in three sections. The details of the Bkd-tree are
given in Section 2. Then, in Section 3, we describe the hardware, software, and data
sets used in our experimental study. The results of the experiments are reported and
analyzed in Section 4.

2 Description of the Bkd-tree

As mentioned, the Bkd-tree consists of a set of balanced kd-trees. Each kd-tree is laid
out (or blocked) on disk similarly to the way the K-D-B-tree is laid out. To store a
given kd-tree on disk, we first modify the leaves to hold � points, instead of just one.
In this way, points are packed in ��� � blocks. To pack the internal nodes of the kd-
tree, we execute the following algorithm. Let ��� be the number of nodes that fit in one
block. Suppose first that ���	� is an exact power of ��� , i.e., ���	���#� �� , for some � ,
and that � � is an exact power of � . In this case the internal nodes can easily be stored in
������� � � � � � � blocks in a natural way. Starting from the kd-tree root � , we store together
the nodes obtained by performing a breadth-first search traversal starting from � , until
� � nodes have been traversed. The rest of the tree is then blocked recursively. Using
this procedure the number of blocks needed for all the internal nodes is ������� � � � � ��� ,
and the number of blocks touched by a root-leaf path—the path traversed during a point
query—is �
	�� ��
 � � � � � 
�������������� � �����	����� . If ���	� is not a power of � � , we fill the
block containing the kd-tree root with less than � � nodes in order to be able to block
the rest of the tree as above. If ���	� is not a power of � the kd-tree is unbalanced and
the above blocking algorithm can end up under-utilizing disk blocks. To alleviate this
problem we modify the kd-tree splitting method and split at rank power of 2 elements,
instead of at the median elements. More precisely, when constructing the two children
of a node � from a set of � points, we assign ����� ����� ��� points to the left child, and the
rest to the right child. This way, only the blocks containing the rightmost path—at most
� � � ����
 �����	��� � —can be under-full.

From now on, when referring to a kd-tree, we will mean a tree stored on disk as
described above.



2.1 Bulk Loading kd-trees

Classically, a kd-tree is built top-down, as outlined in Figure 2 (left column). The first
step is to sort the input on both coordinates. Then (in Step 2) we construct the nodes
in a recursive manner, starting with the root. For a node � , we determine the split-
ting position by reading the median from one of the two sorted sets associated with �
(when splitting orthogonal to the � -axis we use the file sorted on � , and when split-
ting orthogonal to the  -axis we use the file sorted on  ). Finally we scan these sorted
sets and distribute each of them into two sets and recursively build the children of � .
Since the kd-tree on � points has height � � � � ����� � � and each input point is read twice
and written twice on every level, the algorithm performs ��� �����	��� ����� � � ���	� � � I/Os,
plus the cost of sorting, which is ��� �����	��� � � � ��� � �����	����� I/Os [2], for a total of
��������� � � � � � � � � � � � � I/Os.

Algorithm Bulk Load (binary)
(1) Create two sorted lists;
(2) Build kd-tree top-down:

Starting with the root node, do the fol-
lowing steps for each node, in a depth-
first-search manner:

(a) Find the partitioning line;
(b) Distribute input into two sets, based

on partitioning line;

Algorithm Bulk Load (grid)
(1) Create two sorted lists;
(2) Build ����� 
�� levels of the kd-tree:

(a) Compute � grid lines orthogonal to the� axis and � grid lines orthogonal to
the � axis;

(b) Create the grid matrix 	 containing
the grid cell counts;

(c) Create a subtree of height ����� 
 � , us-
ing the counts in the grid matrix;

(d) Distribute input into � sets, corre-
sponding to the � leaves;

(3) Build the bottom levels either in main
memory or by recursing step (2).

Fig. 2. Two algorithms for bulk loading a kd-tree

An improved bulk loading method was proposed in [1]. Instead of constructing one
level at a time, this algorithm constructs an entire ��������� � � � � � ��� -height subtree of
the kd-tree at a time. The major steps of the algorithm are outlined in Figure 2 (right
column). As before, the first step is to sort the input on both coordinates. Then (in
Step 2) we build the upper � � � ��
 levels of the kd-tree using just three passes over the
input file, where 
 �����
������� � �	��� ! ��� � . We achieve this by first determining a 
���

grid on the input points: 
 horizontal (vertical) grid lines are chosen (in Step 2a) so
that each horizontal (vertical) strip contains � � 
 points—refer to Figure 3(a). Then (in
Step 2b) the number of points in each grid cell is computed by simply scanning the input
file. These counts are stored in a 
���
 grid matrix � , kept in internal memory (the size
of the matrix, 
 � , is at most

�
). The upper subtree of height ����� ��
 is now computed (in

step 2c) using a top-down approach. Assume the root node partitions the points using a
vertical line. This split line can be determined by first computing (using the cell counts
in matrix � ) the vertical strip ��� containing the line. After that we can easily compute
which block to read from the list sorted by � -coordinate in order to determine the point



defining the split. Next the grid matrix � is split into two new matrices, ��� and � � ,
storing the grid cell counts from the left and from the right of the split line, respectively.
This can be done by scanning the contents of the vertical strip � � . Figure 3(b) shows
how a cell

����� � from the original grid is split into two cells,
� ���� � and

� ���� � . The number
of points in

� ���� � is stored in � ���� � , and the number of points in
� ���� � is stored in � ���� � , for

each 	 , ��
�	

 
 . Using matrices � � and � � , the split corresponding to two children
of � can be computed recursively. For each node we produce, the size of the matrix �
in internal memory grows by 
 cells. Since 
 
 ��� ! � � , it still fits in memory after
producing ����� � 
 levels, that is � � ��� ��� � 
 nodes, of the tree. After producing this number
of levels, the resulting subtree determines a partition of the space into 
 rectangles. At
this point we distribute the input points into these rectangles by scanning the input
and, for each point � , using the constructed subtree to find the rectangle containing
� (Step 2d). If the main memory can hold 
 
 � blocks—one for each rectangle in
the partition, plus one for the input—the distribution can be done in � � � � I/Os. This
explains the choice of 
 � ���
����� � � �	��� ! � ��� . Finally, the bottom levels of the tree
are constructed (in Step 3) by recursing Step 2 or, if the point set fits in internal memory,
by loading it in memory and applying the binary bulk load algorithm to it.

Since Step 2 scans the input points two times, it follows that ��������� � � � �	����� lev-
els of the kd-tree can be built using ������� � � I/Os. Thus the entire kd-tree is built in
��������� � � � � � ��� � � � � � � � I/Os. This is a factor of ����� � � � � � �	����� better than the bi-
nary bulk load algorithm. For most practical purposes, the logarithmic factor is at most
3, so the bulk loading complexity is effectively linear.

The algorithm presented in this section uses only the characteristics of the internal
memory kd-tree, and not the specific disk layout. Consequently, other I/O-efficient data
structures based on the kd-tree can be bulk loaded using this algorithm. In particular,
the algorithm can be readily used to bulk load an hB � -tree, which was mentioned as an
open problem in [10].

2.2 Dynamic Updates

A Bkd-tree on � points in the plane consists of � � � � � ��� � � kd-trees. The � th kd-tree,� � , is either empty or contains exactly � � � points. Thus,
���

stores at most
�

points.

kX

C j,k

{

(a) (b)

C j,k
< C j,k

>

Fig. 3. Finding the median using grid cells. (a) Each strip contains ��� � points. (b) Cells ������ � and������ � are computed by splitting cell � ��� � .



In addition, a structure
� ��

containing at most
�

points is kept in internal memory.
Figure 4 depicts the organization of the Bkd-tree. This organization is similar to the one
used by the logarithmic method [8, 21].

i2
i

M

M2MM
2

M
0 0 1T T T

size

On external storage

size

In main memory

size 0

T T

size size

Fig. 4. The forest of trees that makes up the data structure. In this instance, � 
 is empty.

The algorithms for inserting and deleting a point are outlined in Figure 5. The sim-
plest of the two is the deletion algorithm. We simply query each of the trees to find the
tree

� � containing the point and delete it from
� � . Since there are at most � � � � ����� � �

trees, the number of I/Os performed by a deletion is ����������� � � � � � � � � � � ��� � ��� .
The insertion algorithm is fundamentally different. Most insertions (

��� � out of�
consecutive ones) are performed directly on the in-memory structure

� ��
. Whenever� ��

becomes full, we find the smallest � such that
� � is an empty kd-tree. Then we

extract all points from
� ��

and
� � , � 
 ����� , and bulk load the tree

� � from these
points. Note that the number of points now stored in

� � is indeed � � � since
� ��

stores�
points and each

� � , � 
 ���	� , stores exactly � � � points (
� � was the first empty

kd-tree). Finally, we empty
� ��

and
� � , �

 �
��� . In other words, points are inserted

in the in-memory structure and gradually “pushed” towards larger kd-trees by periodic
reorganizations of small kd-trees into one large kd-tree. The larger the kd-tree, the less
frequently it needs to be reorganized.

To compute the amortized number of I/Os performed by one insertion, consider
� consecutive insertions in an initially empty Bkd-tree. Whenever a new kd-tree

� �
is constructed, it replaces all kd-trees

� �
, � 
 	��
� , and the in-memory structure� ��

. This operation takes ����� � � � � � � � � � ��� � � � � � � � ��� I/Os (bulk loading
� � ) and

moves exactly � � � points into the larger kd-tree
� � . If we divide the construction

of
� � between these points, each of them has to pay ����� � �	��� � � � ��� � � � � � � � ��� �

����� �	�	��� ����� ��� � �����	����� I/Os. Since points are only moving into larger kd-trees, and
there are at most � � � � ����� � � kd-trees, a point can be charged at most � � � � ����� � �
times. Thus the final amortized cost of an insertion is �

�
� ����������� � � ��� � � � � � � � ���� � I/Os.



Algorithm Insert �����
(1) Insert � into in-memory buffer ���� ;
(2) If ���� is not full, return; otherwise, find

the first empty tree � � and extract all
points from ���� and �
	 , �
������� into
a file � ;

(3) Bulk load � � from the items in � ;
(4) Empty � �� and � 	 , ��������� .

Algorithm Delete �����
(1) Query ���� with � ; if found, delete it and

return;
(2) Query each non-empty tree in the forest

(starting with � � ) with � ; if found, delete
it and return;

Fig. 5. The Insert and Delete algorithms for the Bkd-tree

2.3 Queries

To answer a window query on the Bkd-tree we simply have to query all � � � � � ��� � � kd-
trees. The worst-case performance of a window query on one kd-tree storing � points
is an optimal ��� � � � � 
 ���	��� I/Os, where � is the number of points in the query
window. Since the kd-trees that form the Bkd-tree are geometrically increasing in size,
the worst-case performance of the Bkd-tree is also ��� � ���	� 
����	� � I/Os. However,
since the average window query performance of a kd-tree is often much better than
this worst-case performance [24], it is important to investigate how the use of several
kd-trees influences the practical performance of the Bkd-tree compared to the kd-tree.

3 Experimental Platform

In this section we describe the setup for our experimental studies, providing detailed
information on the software, hardware, and data sets that were used.

Software Platform. We implemented the Bkd-tree in C++ using TPIE. TPIE [4] is a
templated library that provides support for implementing I/O-efficient algorithms and
data structures. In our implementation we used a block size of 16KB for internal nodes
(following the suggestions of Lomet [17] for the B-tree), resulting in a maximum fanout
of 512. The leaves of a kd-tree, stored in 16KB blocks as well, contain a maximum of
1364 � key � pointer � elements. We implemented the Bkd-tree using the grid bulk load-
ing algorithm during insertions and a linear array as the internal memory structure

� ��
(more sophisticated data structures can be implemented for better CPU performance).
For comparison purposes, we also implemented the K-D-B-tree, following closely the
details provided in the original paper [22] regarding the insertion algorithm. As men-
tioned in the Introduction, the K-D-B-tree is the point of departure for the hB-tree [18]
and the hB � -tree [10]. The latter is the state-of-the-art in indexing data structures for
multi-dimensional points. We used the authors’ implementation of the hB � -tree for the
space utilization experiments. The provided implementation is in-memory, but it sim-
ulates I/Os by counting accesses to data blocks. For the rest of the experiments, we
chose not to use this implementation of the hB � -tree, since we wanted to emphasize
the running times of the Bkd-tree for data sets much larger than main memory.



Data Sets. We chose three different types of point sets for our experiments: real points
from the TIGER/Line data [25], uniformly distributed points, and points along a diag-
onal of a square. The real data consists of six sets of points generated from the road
features in the TIGER/Line files. TIGER Set � , ��
 � 
�� , consists of all points on CD-
ROMs 1 through � . Note that the largest set, TIGER set 6, contains all the points in the
road features of the entire United States and its size is 885MB. Table 1 contains the sizes
of all 6 data sets. Figure 6(a) depicts TIGER set 1, representing 15 eastern US states.
It can be seen that points are somewhat clustered, with clusters corresponding to ur-
ban areas. The uniform data consists of six sets, each containing uniformly distributed

Set 1 2 3 4 5 6
Number of points 15483533 29703113 39523372 54337289 66562237 77383213
Size (MB) 177.25 340.00 452.38 621.94 761.82 885.69

Table 1. The sizes of the TIGER sets.

(a) (b)

Fig. 6. (a) An image of TIGER set 1 (all the points in the road features from 15 eastern US states).
The white area contains no points. The darkest regions have the highest density of points. (b) A
diagonal data set.

points in a square region. The smallest set contains 20 million points, while the largest
contains 120 million points. Table 2 contains the sizes of all 6 sets. The final group

Set 1 2 3 4 5 6
Number of points (millions) 20 40 60 80 100 120
Size (MB) 228.88 457.76 686.65 915.53 1144.41 1373.29

Table 2. The sizes of the uniform data sets.

of sets contains points arranged on a diagonal of a square, as shown in Figure 6(b).
We used these sets only for space utilization experiments. In all sets, a point consists
of three integer values: the � -coordinate, the  -coordinate, and an ID, for a total of 12
bytes per point. Thus, the largest data set we tested on, containing 120 million points,
uses 1.34GB of storage.



Hardware Platform. We used a dedicated Dell PowerEdge 2400 workstation with one
Pentium III/500MHz processor, running FreeBSD 4.3. A 36GB SCSI disk (IBM Ultra-
star 36LZX) was used to store all necessary files: the input points, the data structure, and
the temporary files. The machine had 128MB of memory, but we restricted the amount
of memory that TPIE could use to 64MB. The rest was used by operating system dae-
mons. We deliberately used a small memory, to obtain a large data size to memory size
ratio.

4 Experimental Results

4.1 Space Utilization

As mentioned previously, the Bkd-tree has close to 100% space utilization. To contrast
this to the space utilization of the K-D-B-tree and the hB � -tree, we inserted the points
from each of the diagonal data sets, sorted by � -coordinate, in all three data structures,
and measured the final space utilization. The results are depicted in Figure 7(a). As
expected, the Bkd-tree space utilization is almost 100% (between 99.3% and 99.4%).
For the K-D-B-tree, the space utilization is as low as 28%, while for the hB � -tree it is
as low as 38%. In the case of the K-D-B-tree, the diagonal pattern causes most leaves of
the tree to be inside long and skinny rectangles, with points concentrated on one end of
the rectangle. When an internal node is split, some of these leaves are cut, resulting in
empty leaves. As data sets get larger, the effect is compounded (empty leaves are split
as well), resulting in increasingly lower space utilization. In the case of the hB � -tree,
node splits are not propagated down to leaves. Indeed, the space utilization of the leaves
remains at 50% or better, as reported in [10]. However, node splits cause redundancy:
Some kd-tree nodes are stored in multiple hB-tree nodes. Consequently, the size of the
index grows dramatically, resulting in low fanout, large tree height, and poor overall
space utilization. In our experiments, the K-D-B-tree had lower tree height than the
corresponding hB � -tree.

These results underscore the sensitivity of the K-D-B-tree and the hB � -tree to data
distribution and insertion order. Indeed, much better space utilization is obtained when
the points in a diagonal data set are inserted in random order, rather than sorted on the
� coordinate.

To investigate the space utilization for more practically realistic data sets, we re-
peated the experiment using the TIGER data. The structures were built by repeated
insertions, and the order of insertion is given by the order in which the points were
stored in the original TIGER/Line data. Unfortunately, we were not able to run the
hB � -tree experiments in a reasonable amount of time. Experiments on smaller TIGER
data sets show the space utilization of the hB � -tree to be around 62% (consistent with
the results reported in [10] for similar geographic data). Although not as extreme as the
diagonal sets, the real life data sets result in relatively poor space utilization—refer to
Figure 7(b). For these sets, the space utilization of the K-D-B-tree is around 56%, still
far from the 99.4% utilization of the Bkd-tree.



0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Number of points in structure (in millions)

S
pa

ce
 u

til
iz

at
io

n 
(%

)

Bkd−tree
hB−tree
K−D−B−tree

(a)

1 2 3 4 5 6
0  

20 

40 

60 

80 

100

 

Tiger Set

S
pa

ce
 u

til
iz

at
io

n 
(%

)

Bkd−tree
K−D−B−tree

(b)

Fig. 7. (a) Space utilization for the diagonal sets. (b) Space utilization for the TIGER sets.

4.2 Bulk Loading Performance

To compare the two kd-tree bulk loading algorithms presented in Section 2.1, we tested
them on both the uniform and the real data sets. Figure 8 shows the performance for
the uniform data sets and Figure 9 shows the performance for the TIGER data sets. The
figures reflect only the building time, leaving out the time needed to sort the data set on
each coordinate, which is common for the two methods.

20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of points in structure (in millions)

T
im

e 
(s

ec
on

ds
)

Binary method
Grid method

(a)

20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3
x 10

6

Number of points in structure (in millions)

N
um

be
r 

of
 I/

O
s

Binary method
Grid method

(b)

Fig. 8. Bulk loading performance on uniform data: (a) Time (in seconds), (b) Number of I/Os.

The experiments on uniformly distributed data (Figure 8(a)) show that, in terms
of running time, the grid method is at least twice as fast as the binary method and,
as predicted by the theoretical analysis, the speedup increases with increased set size.
When comparing the number of I/Os (Figure 8(b)), the difference is even larger. To
better understand the difference in the number of I/Os performed by the two methods,
we can do a “back-of-the-envelope” computation: for the largest size tested, the binary
method reads the input file 14 times and writes it 13 times (two reads and two writes



for each of the upper levels, and two reads and one write for the lower levels, which
are computed in memory), while the grid method reads the input file 5 times and writes
it 3 times (one read to compute the grid matrix, two reads and two writes for all the
upper levels, and two reads and one write for the lower levels, which are computed in
memory). This means that the grid method saves 9 reads of the entire file and, more
importantly, 10 writes of the entire input file. To put it differently, the grid method
performs less than a third fewer I/Os than the binary method. This corresponds perfectly
with the results from Figure 8(b). The difference between the running time speedup
(approximately 2) and the I/O speedup (approximately 3) reflects the fact that the grid
method is more CPU-intensive.

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

Tiger Set

T
im

e 
(s

ec
on

ds
)

Binary method
Grid method

(a)

1 2 3 4 5 6
0

2

4

6

8

10

12

14

16
x 10

5

Tiger Set

N
um

be
r 

of
 I/

O
s

Binary method
Grid method

(b)

Fig. 9. Bulk loading performance on TIGER data: (a) Time (in seconds), (b) Number of I/Os.

The experiments on the TIGER data (Figure 9) show a similar pattern. Note that the
kd-tree bulk loading performance is independent of the data distribution, which means
that the bulk loading performance can be predicted very accurately only from the num-
ber of points to be indexed. To illustrate this, consider the uniformly distributed set
containing 40 million points, and TIGER set 3, containing 39.5 million points. Com-
paring the bulk loading times for the two sets, we find virtually identical values.

4.3 Insertion Performance

To compare the average insertion performance of the Bkd-tree with that of the K-D-
B-tree, we inserted all the points of each TIGER set into an initially empty structure,
and we divided the overall results by the number of points inserted. Figure 10 shows
the average time and the average number of I/Os for one insertion. In terms of elapsed
time, a Bkd-tree insertion is only twice as fast as a K-D-B-tree insertion. When I/Os are
counted, however, the Bkd-tree values are not even visible on the graph, since they are
well below 1. This dissimilarity in the two performance metrics can be easily explained
by the layout of the TIGER data and caching effects. Since points are inserted in the K-
D-B-tree in the order in which they appear in the original data sets (points in the same



county are stored together), the K-D-B-tree takes advantage of the locality existent in
this particular order and the fact that we cache root-leaf paths during insertions. If the
next point to be inserted is next to the previous one, the same path could be used, and
the insertion may not perform any I/Os.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

Tiger Set

T
im

e 
(s

ec
on

ds
)

K−D−B−tree
Bkd−tree

(a)

1 2 3 4 5 6
0

1

2

3

4

5

6

Tiger Set

N
um

be
r 

of
 I/

O
s

K−D−B−tree
Bkd−tree

(b)

Fig. 10. Insertion performance on K-D-B-trees and Bkd-trees (TIGER data): (a) Time (in sec-
onds), (b) Number of I/Os.

We also compared the average insertion performance of the Bkd-tree and the K-D-
B-tree using the artificially generated data. The insertions in these experiments exhibit
less (or no) locality since points were inserted in random order. Figure 11 shows the
average time and number of I/Os for one insertion, using the uniform data sets. For
the Bkd-tree, the values were obtained by inserting all points one by one in an initially
empty structure and averaging. For the K-D-B-tree, however, we have not been able to
perform the same experiment. Even for the smallest set, containing 20 million points,
inserting them one by one takes more than 2 days! This is due to the lack of locality
in the insertion pattern; even if all internal nodes are cached, each insertion still makes
at least two I/Os (to read and to write the corresponding leaf) because chances are that
the relevant leaf is not in the cache. This results in 40 million random I/Os for the 20
million point set.

Since we could not build the K-D-B-tree by repeated insertions, we designed a dif-
ferent experiment to measure the K-D-B-tree insertion performance. We bulk loaded a
K-D-B-tree using the input points (filling each leaf and node up to 70% of capacity) and
then we inserted � � � � random points into that structure. As predicted by the theoretical
analysis, a Bkd-tree insertion is several orders of magnitude faster than a K-D-B-tree
insertion, both in terms of elapsed time and number of I/Os; in terms of elapsed time,
the Bkd-tree insertion is more then 100 times faster than the K-D-B-tree insertion, for
all data sizes. In terms of number of I/Os, the Bkd-tree is up to 230 times faster. The
discrepancy between the two numbers comes, again, from the fact that we cache nodes
and leaves. Since the Bkd-tree implicitly uses the entire main memory as cache, we
allowed the K-D-B-tree to do the same. However, due to the randomness of the data,
very few leaves were found in the cache.



20 40 60 80 100 120
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of points in structure (in millions)

T
im

e 
(s

ec
on

ds
, l

og
. s

ca
le

)

K−D−B−tree
Bkd−tree

(a)

20 40 60 80 100 120
10

−2

10
−1

10
0

10
1

10
2

Number of points in structure (in millions)

N
um

be
r 

of
 I/

O
s 

(lo
g.

 s
ca

le
)

K−D−B−tree
Bkd−tree

(b)

Fig. 11. Insertion performance on K-D-B-trees and Bkd-trees (uniformly distributed data): (a)
Time (in seconds), (b) Number of I/Os.

4.4 Query Performance

Although the worst case asymptotic bounds for a window query on a Bkd-tree and a K-
D-B-tree are identical, we expect the Bkd-tree to perform more I/Os, due to the multiple
trees that need to be searched. To investigate this, we queried a Bkd-tree and a K-D-B-
tree with the same window. Figure 12 shows the running times and number of I/Os of
a square-shaped window query that covers 1% of the points in each of the uniform data
sets. These values are obtained by averaging over 10 queries of the same size, whose
position is randomly chosen in the area covered by the points. It can be seen that the
Bkd-tree performs roughly the same number of I/Os as the K-D-B-tree. This somewhat
unexpected result is the consequence of a number of factors. First, the average number
of kd-trees forming the Bkd-tree is less than � � � � � ����� � � � (the maximum possible).
Table 3 shows the number of non-empty kd-trees and the number of maximum kd-trees
for each of the 6 uniform data sets. It can easily be shown that in the course of � � �
insertions into an initially empty Bkd-tree, the average number of non-empty kd-trees
is � � � . As a result, the number of kd-trees that need to be searched during a window
query is smaller than the maximum. Second, the individual kd-trees in the Bkd-tree
have smaller heights than the K-D-B-tree built on the same data set. This is due to the
geometrically decreasing sizes of the kd-trees and to the fact that, as noted in Section 3,
the fanout of the Bkd-tree is larger than the fanout of the K-D-B-tree. As a result, the
number of internal nodes read during a window query is small. Third, the kd-tree query
performance is very efficient for these data sets. Table 4 shows, for the uniform data
sets, the number of points returned by the query as a percentage of the total number
of points retrieved. As a result, both data structures read roughly the same number of
leaf-level blocks, which is close to optimal.

In terms of running time, the K-D-B-tree is faster than the Bkd-tree. This can be
explained by the fact that the queries are performed on a bulk loaded K-D-B-tree. The
trees constructed by the bulk loading algorithms described in Section 2.1 exhibit a high
level of locality, in the sense that points that are nearby on disk are likely to be spatially
close. Queries performed on the K-D-B-tree are able to take advantage of this locality,
resulting in a more sequential access pattern. On the other hand, the Bkd-tree has less



20 40 60 80 100 120
0

2

4

6

8

10

12

Number of points in structure (in millions)

T
im

e 
(s

ec
on

ds
)

K−D−B−tree
Bkd−tree

(a)

20 40 60 80 100 120
100

200

300

400

500

600

700

800

900

1000

Number of points in structure (in millions)

N
um

be
r 

of
 I/

O
s

K−D−B−tree
Bkd−tree

(b)

Fig. 12. Range query performance on the uniform data (the range area is 1% of entire area): (a)
Time (in seconds), (b) Number of I/Os.

locality, since multiple trees have to be queried to obtain the final result. In a real-world
spatial database the K-D-B-tree is often obtained by repeated insertions. This typically
results in a structure with low space utilization and poor locality. This behavior can be

Number of points (in millions) 20 40 60 80 100 120
Non-empty kd-trees 3 3 3 4 4 4
Max kd-trees ( � � � � 
 � ��������� ) 4 5 6 6 7 7

Table 3. The number of non-empty kd-trees and the maximum number of kd-trees, for each
Bkd-tree built on the uniform data sets.

Number of points (in millions) 20 40 60 80 100 120
Bkd-tree 78.4 84.7 88.1 86.5 90.4 90.6
K-D-B-tree 74.8 83.6 86.2 87.9 90.2 90.6

Table 4. The number of points returned by a window query as a percentage of the total number
of points retrieved. For each set, the window covers 1% of the total number of points

observed in the experiments performed on the TIGER sets. As explained in Section 4.3,
the K-D-B-tree for the TIGER sets was obtained by repeated insertions. As a result, it
exhibits much less locality. Figure 13 shows that the two structures perform similarly
in terms of time, attesting to the fact that both structures have to perform some random
I/O (the Bkd-tree because it queries multiple kd-trees, and the K-D-B-tree because it
exhibits less locality). In terms of I/O, the Bkd-tree is performing half as many I/Os as
the K-D-B-tree. This is due to the poor space utilization of the K-D-B-tree, which was
shown to be around 56% for the TIGER data sets (see Section 4.1).

In order to measure the effect of the window size on the query performance, we
ran a set of experiments with various window sizes. Figure 14 shows the results of
these experiments. Both the K-D-B-tree and the Bkd-tree are built on the largest data
set, containing 120 million uniformly distributed points. On the graph showing elapsed
time, we see again the effects of a freshly bulk loaded K-D-B-tree, resulting in a more
sequential I/O pattern than the Bkd-tree. But the I/O performance of the two structures
is virtually identical for the entire range of query sizes, confirming the results obtained



1 2 3 4 5 6
0

0.5

1

1.5

TIGER Set

T
im

e 
(s

ec
on

ds
)

K−D−B−tree
Bkd−tree

(a)

1 2 3 4 5 6
0

50

100

150

200

250

300

350

400

TIGER Set

N
um

be
r 

of
 I/

O
s

K−D−B−tree
Bkd−tree

(b)

Fig. 13. Range query performance on the TIGER data: (a) Time (in seconds), (b) Number of I/Os.

on the 1% query, namely that the Bkd-tree’s window query performance is on par with
that of existing data structures. Thus, without sacrificing window query performance,
the Bkd-tree makes significant improvements in insertion performance and space uti-
lization: insertions are up to 100 times faster than K-D-B-tree insertions, and space
utilization is close to a perfect 100%, even under massive insertions.

0 0.5 1 1.5 2
0

5

10

15

20

25

Query window size as a percentage of entire window size

T
im

e 
(s

ec
on

ds
)

K−D−B−tree
Bkd−tree

(a)

0 0.5 1 1.5 2
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Query window size as a percentage of entire window size

N
um

be
r 

of
 I/

O
s

K−D−B−tree
Bkd−tree

(b)

Fig. 14. Performance of range queries of increasing size (the data set consists of 120 million
points uniformly distributed in a square): (a) Time (in seconds), (b) Number of I/Os.

Acknowledgments

We would like to thank Georgios Evangelidis for providing us the hB � -tree code.

References

1. P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter. A framework for index bulk loading
and dynamization. In Proc. Intl. Colloq. Automata, Languages and Programming, pages
115–127, 2001.

2. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related problems.
Commun. ACM, 31:1116–1127, 1988.



3. L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and M. G. C.
Resende, editors, Handbook of Massive Data Sets, pages 313–358. Kluwer, 2002.

4. L. Arge, O. Procopiuc, and J. S. Vitter. Implementing I/O-efficient data structures using
TPIE. In Proc. European Symp. on Algorithms, pages 88–100, 2002.

5. L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and optimal range
search indexing. In Proc. ACM Symp. Principles of Database Systems, pages 346–357, 1999.

6. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and
robust access method for points and rectangles. In Proc. SIGMOD Intl. Conf. on Management
of Data, pages 322–331, 1990.

7. J. L. Bentley. Multidimensional binary search trees used for associative searching. Commun.
ACM, 18(9):509–517, Sept. 1975.

8. J. L. Bentley. Decomposable searching problems. Inform. Process. Lett., 8:244–251, 1979.
9. S. Berchtold, C. Böhm, and H.-P. Kriegel. Improving the query performance of high-

dimensional index structures by bulk load operations. In Proc. Intl. Conf. on Extending
Database Technology, volume 1377 of Lecture Notes Comput. Sci., pages 216–230, 1998.

10. G. Evangelidis, D. Lomet, and B. Salzberg. The hB � -tree: A multi-attribute index supporting
concurrency, recovery and node consolidation. The VLDB Journal, 6:1–25, 1997.

11. V. Gaede and O. Günther. Multidimensional access methods. ACM Computing Surveys,
30(2):170–231, 1998.

12. R. Grossi and G. F. Italiano. Efficient cross-tree for external memory. In
J. Abello and J. S. Vitter, editors, External Memory Algorithms and Visualization,
pages 87–106. American Mathematical Society, 1999. Revised version available at
ftp://ftp.di.unipi.it/pub/techreports/TR-00-16.ps.Z.

13. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. SIGMOD
Intl. Conf. on Management of Data, pages 47–57, 1984.

14. H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and R. Kanneganti. Incremental
organization for data recording and warehousing. In Proc. Intl. Conf. on Very Large Data
Bases, pages 16–25, 1997.

15. K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-replicating index
structures. In Proc. Intl. Conf. on Database Theory, volume 1540 of Lecture Notes Comput.
Sci., pages 257–276, 1999.

16. D. T. Lee and C. K. Wong. Worst-case analysis for region and partial region searches in
multidimensional binary search trees and balanced quad trees. Acta Informatica, 9:23–29,
1977.

17. D. Lomet. B-tree page size when caching is considered. SIGMOD Record, 27(3):28–32,
1998.

18. D. B. Lomet and B. Salzberg. The hB-Tree: A multiattribute indexing method with good
guaranteed performance. ACM Trans. on Database Systems, 15(4):625–658, Dec. 1990.

19. J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An adaptable, symmetric
multikey file structure. ACM Trans. on Database Systems, 9(1):38–71, Mar. 1984.

20. P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The log-structured merge-tree (LSM-
tree). Acta Informatica, 33(4):351–385, 1996.

21. M. H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes
Comput. Sci. Springer-Verlag, 1983.

22. J. T. Robinson. The K-D-B-tree: A search structure for large multidimensional dynamic
indexes. In Proc. SIGMOD Intl. Conf. on Management of Data, pages 10–18, 1981.

23. H. Samet. The design and analysis of spatial data structures. Addison-Wesley, 1990.
24. Y. V. Silva Filho. Average case analysis of region search in balanced � -d trees. Inform.

Process. Lett., 8:219–223, 1979.
25. TIGER/Line Files, 1997 Technical Documentation. U.S. Census Bureau, 1998.

http://www.census.gov/geo/tiger/TIGER97D.pdf.


