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Abstract

We consider the problem of efficiently reconciling two similar sets held by different hosts
while minimizing the communication complexity. This type of problem arises naturally from
gossip protocols used for the distribution of information. We describe an approach to set recon-
ciliation based on the encoding of sets as polynomials. The resulting protocols exhibit tractable
computational complexity and nearly optimal communication complexity. Also, these protocols
can be adapted to work over a broadcast channel, allowing many clients to reconcile with one
host based on a single broadcast, even if each client is missing a different subset.

1 Introduction

Gossip protocols, also known as epidemic algorithms, spread information through a network of
hosts by random contacts between pairs of hosts. Through many such uncoordinated exchanges,
information is spread throughout the system. Gossip protocols, while not a new idea [1, 2], have
recently become the subject of increasing interest as a building block for reliable and scalable
distributed systems.

The information disseminated by a gossip protocol usually consists of a set of distinct entries,
each entry comprising a discrete piece of information about a system. Examples of information
disseminated by gossip protocols include: addresses of participating hosts [3, 4, 5, 6]; locations of
resources [7]; bibliographic data [3]; and broadcast messages [2, 3, 8, 9]. When a pair of hosts
exchange information, they must reconcile their respective data sets, so that each ends up knowing
the other’s information. What makes this reconciliation difficult is that the hosts do not know a
priori which data elements need to be transmitted.

We formalize the problem of reconciling two hosts’ data sets as follows: given a pair of hosts
A and B, each with a set of length-b bit-strings, how can each host determine the union of the
two sets with a minimal amount of communication—both with respect to the number of exchanges
between the two hosts and with respect to the number of bits of information exchanged. We call
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this the set reconciliation problem. Set reconciliation has applications outside of gossip protocols.
In particular, it can be applied to any situation where unordered databases need to be reconciled.
So, for example, set reconciliation could be used to improve the efficiency of reconciling distributed
file-systems and databases.

This paper presents two surprisingly elegant and efficient set reconciliation protocols. Instead
of dealing with sets directly, these protocols encode each set as a polynomial whose roots are the
elements of the set. The advantage of this approach is that some operations on sets, in particular
set difference, can be computed more efficiently from the polynomial encoding.

The communication complexity of these set reconciliation protocols is independent of the sizes
of the hosts’ sets, and instead depends only on the size of the difference between the two sets.
Moreover, under certain conditions, set reconciliation can be achieved non-interactively, with just
a single message. Thus, a host A could broadcast a kb-bit message, and every host B; whose set
differs from A’s set by at most k bit-strings (each of length b) could recover the bit-strings it is
missing. This works even if each host B; is missing a different set of bit-strings, so that the total
number of distinct bit-strings recovered is much larger than &.

Section 2 presents a protocol for reconciling two hosts whose sets bear a subset relationship; that
is, one host’s set is a subset of the other host’s set. Section 3 generalizes this result to the general
case where no subset relationship is assumed. Section 4 presents information-theoretic bounds on
set reconciliation, and shows that the communications complexity of the protocols of Sections 2
and 3 are near optimal. Section 5 discusses related work, and Section 6 discusses directions for
future research. Finally, the appendices describe some of the computational intricacies in these
protocols and present some implementation data.

2 Subset Reconciliation

Consider a pair of hosts A and B that each have a set of length-b bit-strings, denoted S4 and Sp
respectively. Denote the differences between the two hosts by Ay = S4\Sp and Ap = Sg\Sa. Let
my4 and mp the size of Ay and Ap respectively, and let m = m 4 + mp. The subset reconciliation
problem is the special case of set reconciliation where Sg C Sy, i.e. where m = m4 and mp = 0.

One case of the subset reconciliation problem has a straightforward solution—when only one of
A’s bit-strings is not known to B, that is, when m4 = 1. In this case, Protocol 1 reconciles the two
sets with a single b-bit message. The key to Protocol 1 is that the two hosts can recover the parity
sum (bitwise exclusive or) of the difference set A4 from the parity sum of S4 and the parity sum
of Sp. Since |A 4| =1 this parity sum is in fact the missing bit-string.

Protocol 1 Subset Reconciliation when m4 =1

1. Host A computes parity 4, the parity sum of its bit-strings, and sends it to B
2. Host B computes parity g, the parity sum of its bit-strings.

3. Host B computes the parity sum of parity4 and parityg, which is precisely the missing bit-
string.




2.1 Characteristic Polynomials

Protocol 1 is limited to the case where m = m4 = 1 by the fact that the parity sum does not
carry enough information to recover multiple elements of a set. To generalize Protocol 1, we need
a generalization of the parity-sum that provides sufficient information to recover more than one
missing bit-string. The generalization we will use is the characteristic polynomial Xg(Z) of a set
S ={z1,z9,... ,x,}, which we define to be the following univariate polynomial.

Xs(2) = (Z = 21)(Z = 22)(Z — w3) - (Z — )

=Z" —01(8)Z" 4+ (=1)"0n(S). (1)

The coefficients 0;(S) of the characteristic polynomial are known as the elementary symmetric
polynomials of S. The i-th elementary symmetric polynomial of a set S is the sum of products of
all i element subsets of S. Thus, if a set S = {z1,z2,23,... ,Zn} then

o1(S) =z1+z2++- + T,
02(S) = 120 + T123 + 4+ Ty 1Ty,
03(S) = z12223 + T1%2T4 + - - + T—2T—1Tm,

om(S) =x129 - Ty

Note that the zeros of Xg(Z) are precisely the elements of S. Thus, the elements of S can be
recovered by factoring Xg(Z). Also note that Xg(Z) is necessarily monic, i.e. its leading coefficient
is 1.

To use the characteristic polynomial in place of the parity sum of Protocol 1, host B must be
able to determine the coefficients of XA ,(Z) given a small amount of information provided by A.
Theorem 1 shows how the coefficients of XA ,(Z) can be reconstructed from only the high-order
coefficients of Xg,(Z) and Xg,(Z). Thus, once A transmits the required coefficients of Xg,(Z) to
B, the coefficients of Xa ,(Z) can be reconstructed by B.

Theorem 1 The coefficients of XA ,(Z) can be reconstructed from the coefficients of the ma + 1
highest-degree terms of Xg,(Z) and Xg,(Z). In particular, we have the following convolutional
relationship between the coefficients of Xg,(Z), Xg5(Z) and Xa ,(Z2):

or(Aa) = 0k(Sa) —ok(SB) — | Y oi(Aa)ok i(Sp) (2)
0<i<k

Proof: Since S4 = A4 U Sp, the characteristic polynomial of S4 can be written as the product:

XS4 (2) = XA 4 (Z)XSB (2)

Equating the coefficients on both sides of the equals sign gives:

o1(Sa) = o1(Aa) +01(SB)
02(S4) = 02(A4) +01(A4)o1(SB) + 02(SB)

ok(Sa) = or(Aa)+ Y 0i(Aa)ok—i(SB) (3)
0<i<k
+or(SB).



Equation (2) follows from a simple rearrangement of Equation (4) and can be applied iteratively
to construct the first k£ elementary symmetric polynomials of A4 from the first k£ elementary sym-
metric polynomials of S4 and Sp. These elementary symmetric polynomials are the high-order
coefficients of X ,(Z). |

To use characteristic polynomials for set reconciliation, we need to map length-b bit-strings onto
elements of some field. To eliminate growth in the size of the numbers with which we compute, we
use a finite field, which we denote by IF,. There are two cases of interest: the first is where g is prime
and I, is simply the integers modulo ¢. In this case, each bit-string is interpreted as a binary integer
less than ¢g. By Bertrand’s Postulate [10, p. 343] there is always at least one prime number between
20 and 2°*!, so elements of [F, can be represented using lg g < b+ 1 bits. The second case is where
g = 2°. Elements of F4 are then isomorphic to polynomials cp_10? 1+ cp_oa 2433+ 4
in o, where « is the zero of an irreducible polynomial of degree b over F5. In this case, each bit-string
is represented using exactly Igq = b bits.!

Using a field of order 2° is more efficient in terms of the number of bits required, since no
overhead is needed to transmit a length-b bit-string. On the other hand, using a prime-order field
may require up to one extra bit per transmission, but is computationally more efficient on most
hardware. For the rest of this paper we will interpret all bit-strings as elements of F,, without
specifying a choice of q.

2.2 The Protocol

Protocol 2, which was first described in [11], provides an efficient solution to the subset reconciliation
problem. Note that Protocol 2 only sends m 4 coefficients, and not m 4+1, because the characteristic
polynomial is necessarily monic and so the leading coeflicient is known a priori. Note also that
Protocol 2 assumes that m 4, the number of missing bit-strings, is known. Since S C Sj4, the
value of m 4 is simply the difference |S4| — |Sp| and can be determined with a single b-bit message.

Protocol 2 Subset Reconciliation when m4 > 1
Assuming Sp C S4, and host A knows m 4, hosts A and B can reconcile their data sets as follows:

1. Host A computes the first m 4 elementary symmetric polynomials of the elements of its set
S4 and sends them to host B.

2. Host B computes the first m4 elementary symmetric polynomials of its set Sp.

3. Using Theorem 1, host B computes the elementary symmetric polynomials of Ay =S4\ Sp
and constructs the corresponding characteristic polynomial X , (Z). The elements of A 4 are
precisely the zeros of Xa , (Z).

The following example demonstrates Protocol 2 concretely.

Example 1 Consider the set Sy = {1,2,3,4,5,6} and its subset Sp = {2,4,6} stored as 3-bit
integers at hosts A and B respectively. We treat the members of S4 and Sp as elements of Fy;.

e Host B sends |Sg| = 3 to host A.

'Note that when working over Fam , ¢1(S) is the parity sum discussed at the beginning of this section.



e Host A sends to host B the my = [S4| — |Sp| = 3 elementary symmetric polynomial values:

01(S4) =14+2+3+4+5+6=10,
09(S4)=1-24+1-3+4+---4+5-6 =10,
03(S4)=1-2-3+1-2-44---44-5-6=9

e Host B then computes its own elementary symmetric polynomial values:

01(Sp)=2+4+6=1,
02(53)22-4+2-6—|—4-6:0,
03(53)22-4-6:4

e Host B uses Equation (2) to compute the elementary symmetric polynomial values of A4 =

Sa\ Sa:

e Using the equality in Equation (1), host B reconstructs the characteristic polynomial
Xp,(Z2)=2°-9Z2* +17 — 4.

The polynomial X ,(Z) is factored as (Z — 1)(Z — 3)(Z — 5) and its zeros are precisely the
elements of A4 = {1, 3, 5}.

2.3 Analysis

Protocol 2 requires two messages: one to determine the size m 4, and the other to transmit the m 4
required coefficients. If an upper bound on m4 is known, then the protocol requires only a single
message, whose length depends on the quality of the upper bound.

Including the cost of determining m 4, the protocol needs to transmit only [m 4 1g(q)] + b bits.
As noted earlier, we can either pick ¢ to be a prime, in which case b < 1g(q) < b+ 1, or we can pick
q to be 2, in which case lg(q) = b. Choosing g = 2° gives the following communication bound.

Theorem 2 Protocol 2 reconciles sets S and Sp using b- (ma + 1) bits of communication.

The computational complexity of Protocol 2 is quite tractable. There are two bottlenecks in
the calculations: computation of the elementary symmetric polynomials and finding the zeros of
the characteristic polynomial. The computation of the elementary symmetric polynomials can be
amortized over insertions into host A’s set, since

0i(SaU{z}) =0i(Sa) + z-0;-1(Sa)- (4)

Thus, to maintain the values of m elementary symmetric polynomials, host A needs only O(m)
time per insertion for an overall running time of O(m|S4|).

The problem of finding zeros of a polynomial over F, is well studied [12, 13, 14, 15]. Appendix A
describes a practical method for factoring a square-free polynomial of degree m in expected time
O(m31g q); more sophisticated algorithms [16] can bring this asymptotic time down to O(m!'-21gq),
but their practical benefits are not clear.



3 Set Reconciliation

Recall that the subset reconciliation algorithm described in Section 2 works by first recovering
XA, (Z), the characteristic polynomial of the set of missing bit-strings, and then determining the
roots of that polynomial in order to recover the elements of the difference set A 4. The coefficients
of XA ,(Z) are recovered from the coefficients of the characteristic polynomials of S4 and Sp
respectively.

The approach used in Section 2 does not apply directly to set reconciliation for two reasons:
first, the technique for recovering the coefficients of the characteristic polynomial requires that Sp
be a subset of S4; second, the algorithm relies on the fact that it is easy to determine m, the
number of missing elements. Neither of these assumptions hold in the case of set reconciliation.

To deal with these problems, we adopt an approach based on sampling and rational function
interpolation for recovering the required characteristic polynomials. The following section presents
an overview of our approach.

3.1 Overview

The key to our approach to set reconciliation is the observation that

XS4 (Z) _ XA, (Z)
XSp (Z) XAp (Z)

This holds because factors corresponding to elements common to both S4 and Sp cancel out in
the division. Thus, although the degrees of Xg,(Z) and Xg,(Z) may be very large, the degrees of
the numerator and denominator of the (reduced) rational function are much smaller, m4 and mp
respectively.

The broad outline of our approach consists of three basic steps:

1. Hosts A and B evaluate Xg,(Z) and Xg, (Z) respectively at the same 77 sample points, where
T is an upper bound on m.

2. The sampled values are combined to compute the value of Xg,(Z)/Xg,(Z), at each of the
sample points. These values are interpolated to recover the coefficients of the reduced rational
function X ,(Z)/XaA,(2).

3. By factoring Xa ,(Z) and XA ,(Z), the elements of A4 and Ap are recovered.

Sections 3.2 and 3.3 discuss rational function interpolation and the selection of sample points
in more detail. A concrete set reconciliation protocol is then described in Section 3.4. Finally
Section 3.5 discusses how set reconciliation can be solved without an a priori bound m on m.

3.2 Rational Function Interpolation

The problem of determining a rational function with that takes on prescribed values is called the
rational interpolation problem. Most of the research in this area has focused on rational functions
with floating point coefficients, where accuracy and numerical stability are important issues. There
are two assumptions that distinguish the rational interpolation problems studied in this paper.
First, the coefficient domain of our rational functions is a finite field where there are no problems
of accuracy or numerical stability. Second, we know a priori that the desired rational functions are
monic.



Let f(Z) be a rational function in one variable over the field K:

qOZ”—I—q1Z”_1+"'+Qn Q(Z)’

where the p;,q; € K. If P(Z) and Q(Z) are relatively prime (i.e. they have no common factors
not in K) then we say that f(Z) is reduced. We say that f(Z) is a monic rational function if
po = qo = 1. We define the degrees of f(Z) to be (m,n). Two rational functions P, /Q; and P,/Q-
are said to be equivalent if PiQs = P»(Q)1. That is, if the two rational functions are reduced to the
same rational function by canceling common factors between the numerator and denominator.

A set of pairs (k;, f;) € K2, where the k; are distinct, is called a support set for an interpolation
problem. We say that a function f(Z) satisfies the support set V if f(k;) = f; for all (k;, f;) € V.

We consider the problem of finding a monic rational function f(Z) that satisfies a support set
V of size T2 such that the sum of the degrees of the numerator and denominator of f(Z) is less than
or equal to 7, and the difference between the degrees of the numerator and of the denominator is
d. Two issues need to be addressed: (1) the existence and uniqueness of a solution to the problem,
and (2) an efficient algorithm to reconstruct a rational function from a support set.

For our use in set reconciliation, the support set is constructed from values of an existing
rational function Xa , (Z)/Xa,(Z), for which d, the difference between the degree of the numerator
and denominator, is [Aa| — |Ag| = |Sa| — |SB|. Thus, existence of a satisfying rational function
is guaranteed. The following proposition addresses the uniqueness issue. It is an adaptation of a
standard theorem on rational interpolation (see [17], Proposition 2.2.1.4).

Theorem 3 Let V be a support set with T elements over a field K. Assume there exist two monic
rational functions that satisfy the support set and that the sum of the degree of the numerator and
denominator is no more than m. Then the two rational functions are equivalent.

Proof: Denote the two monic rational functions, by P,(Z)/Q1(Z) and P»(Z)/Q2(Z). Since
both rational functions satisfy the support set, we have

Py(ki) _ Py(ki)

Qu(ki)  Qa(ki)’
for every k; in the support set V. Clearing the fractions, we see that the polynomial P(Z) =
Pi(Z)Q2(Z) — Po(Z)Q1(Z) must vanish at all k; in the support set. Since all of the polynomials

are monic, the degree of P(Z) is no greater than m — 1. Since P(Z) vanishes at 7 points, it must
be identically zero. [

Thus, rational interpolation is unique up to the equivalence relation between rational functions.

We now present an algorithm for solving the interpolation problem described above. Assume
we have a support set

V ={(h1,f1),--- » (ham, fm)}

Assume that there exists a monic reduced rational function f(Z) of degrees (m4,mp) such that
ma+mp <m and mgq — mp = d. Our goal is to recover f(Z) from V, m and d.
We can bound m4 and mpg as follows:



Note that M4 — ma = mp — mp. Thus, there exists a monic rational function P(Z)/Q(Z) of
degrees (4, mp) which satisfies V' — in particular, f(Z) with the numerator and denominator
multiplied by Z™A~™4, We can write P(Z) and Q(Z) as follows:

P(Z)=Z™ +p1 Z™47 + - + pm,
Q(Z) e ZmB +Q1Zm371 + PP _|_qu

Each pair (k;, f;) € V gives rise to a linear relation between the coefficients of P and Q:
ETA 4okl e pry, = fi- (B2 4+ @kl 2 4 )

We may combine 77 of these relations to form a generalized Vandermonde system of equations as
shown in (5). We denote this system of equations by S(m 4, mp; V). Being a solution of Equation (5)

Y4l
kTA_i e k1 _flka_i ceo —fikr —f1 : flka—ka
EPATl ik 1 -k o ok, —fy N pma | | PR R
: : : q1 :
k™ km 1 —fmkg T —fmkm —fm : Jrkiz® — ke
dmp

()

is a necessary and sufficient? condition for a monic rational function of degrees (4, mp) to satisfy
the support set {(kl,fl)a ) (km, fm)}

Since P(Z)/Q(Z) satisfies the support set {(k1, f1),... , (km, fm)}, Equation (5) must have a
solution. A monic rational function P'(Z)/Q'(Z) with degrees (4, m ) that satisfies Equation (5)
can therefore be found using classical Gaussian elimination in O(m?®) operations.

P'(Z)/Q'(Z) and P(Z)/Q(Z) must satisfy the same support set V', so by Theorem 3 they must be
equivalent. Since by construction P(Z)/Q(Z) reduces to f(Z), P'(Z)/Q'(Z) must reduce to f(Z)
as well. Thus, if g(Z) is the greatest common divisor of P'(Z) and Q'(Z), then f(Z) is equal to

P(Z)/9(2)
Q'(2)/9(7)

Note that the degree of g(Z) is necessarily M4 — my4, and so the degrees of the recovered rational
function are (m4, mp), as is expected.

3.3 Choosing Sample Points

If a sample point k is chosen that is an element of S4 or Sp then the corresponding characteristic
polynomial will vanish. Such anomalous evaluation points complicate the problem interpolation,
especially when k is an element of both S4 and Sp. There are a number of different ways of dealing
with this problem. In the following, we will show one of them, which we call the Expanded Finite
Field approach.

*Because the rational function being recovered is monic, all solutions to Equation (5) represent valid rational
functions of the proper degrees. In particular, neither numerator nor denominator can be the polynomial 0. Thus,
the satisfying Equation (5) is a sufficient condition as well.



The Expanded Finite Field approach works by ensuring that the chosen sample points are not
elements of S4 or Sp, independent of the contents of S4 and Sp. This is done by choosing sample
points from a different set of elements than is used for S4 and Sp. Recall that the elements of S4
and Sp are b-bit strings, which are mapped into elements of the finite field IF,. By enlarging the
field I, we can ensure the existence of a subset of I, that is not used to encode the b-bit strings.
For instance, we could use ¢ = 2°*! instead of ¢ = 2°. Recall that elements of Fy41 have the form

a=a0+a1a+a2a2+---+abab,

where the a; are either 0 or 1 and « is a zero of an irreducible polynomial of degree b + 1 over Fs.
Then b-bit strings can be mapped into elements of Fyy11 where ap = 0. The sample points can then
be chosen such that a = 1 without colliding with any elements of S4 or Sp.

For the case where ¢ is an odd prime number greater than 2°, we can map all possible b-bit
strings onto the elements 0 through 2° — 1. Thus, the elements 2° through ¢ — 1 can be used as
sample points without colliding with any elements of S4 or Sp. In this case, ¢ must be chosen
large enough to accommodate the extra sample points.

In either case, the storage cost of enlarging I, to include sample points disjoint from the elements
of S4 and Sp is at most one bit per number. Note that the Expanded Finite Field approach allows
the parties to choose their evaluation points a priori, without knowledge of the contents of any
data sets.

3.4 A Complete Protocol

This section describes a complete set reconciliation protocol (Protocol 3) based on the techniques
introduced in Sections 3.2 and 3.3.

Most of the calculations required for set reconciliation, including the interpolation and factoring,
only depend on the size of the symmetric difference between the sets to be reconciled. Evaluating
each host’s characteristic polynomial at a given sample point, however, requires a linear scan
over that host’s data set. Fortunately, this cost can be amortized over the updates to the data
sets. This approach is taken in Protocol 3. Accordingly, the protocol consists of three methods:
addElement(elt) and removeElement(elt), which are called whenever a host updates its local data
set, and reconcile(), which computes A4 and Ap.

Following the Expanded Finite Field approach described in Section 3.3, Protocol 3 assumes

that there is a set B < {k1,k2,... ,km} C F, of evaluation points that is agreed upon a priori
between A and B. The set E is assumed not to overlap with the representation in F; of any length-b
bit-string.

Each host maintains a vector of reconciliation data recData of length 7, such that for host
A recDatali] is the value of Xg,(Z) evaluated at k;, and similarly for B. The addElement() and
removeElement() methods incrementally maintain recData as elements are added and removed
from S4 and Sg. A count setSize of the number of elements in the data set is also maintained for
each host.

The core of the protocol is the reconcile() method. Here, the values of recData at A and B
are combined to compute the values of Xg,(Z)/Xg,(Z) at the evaluation points. Then, using the
methods of Section 3.2, a monic rational function is found such that the degrees of the numerator
sum to no more than m and their difference is A.setSize — B.dataSetSize = |Sa| — |Sp|. This
rational function converted to its reduced form is equal to XA, (Z)/XaA ,(Z). The numerator and
denominator are then factored to recover A4 and Ap. A simple and efficient factoring algorithm
is provided in Appendix A as well as references to other more efficient techniques.



The following example demonstrates Protocol 3 concretely.

Example 2 Consider the sets S4 = {1,2,9,12,33} and S = {1,2,9,10,12,28} stored as 6-bit
integers at hosts A and B respectively. We treat the members of S4 and Sp as members of the
finite field Fy; Assume that 7@ = 5 is an upper bound on the size of the symmetric difference
between S4 and Sp.

Let the set of evaluation points E be {—1,—2, -3, —4, —5}. Since 97 > 2% + m, the elements of
E don’t coincide with the representation of any length-6 bit-string. Assume that addElement(z) is
called at A for every z € S4 and at B for every x € Sp.

The characteristic polynomials for A and B are:

Xs.(2)=(Z2-1)-(Z2-2)-(Z-9)-(Z-12) - (Z - 33),
Xsp(2)=(Z2-1)-(Z2-2)-(Z-9)-(Z-10) -
(Z —12) - (Z — 28).

The following table shows the values at the evaluation points of the characteristic polynomials and
the value of their ratio. Recall that all calculations are done over Fg7.

Z=|-1|-2|-3|-4|-5
Xs,(Z) |58 [19 |89 |77 |4
Xs,(Z) |15 |54 |68 |77 |50

Xs,(Z)/Xs,(Z) |75 |74 |17 |1 |35

The values of Xg,(Z) and Xg,(Z) are computed incrementally by the calls to addElement(). The
values of Xg,(Z)/Xg,(Z) are computed in the reconcile() method.

Using the techniques of Section 3.2, we can instantiate and solve Equation 5 to find a rational
function such that the sum of the degrees of the numerator and denominator is 5 and the difference
isd = |Sa|—|SB| = —1. Since the actual symmetric difference is less then 5, Equation 5 is singular,
i.e. there is more than one solution. Fortunately, any solution will do. Consider, for example, the
following solution to Equation 5.

7% 4467 + 12
Z3+4172 +91Z + 4

The GCD of the numerator and the denominator is (Z — 18). By dividing out the GCD we get:

Z—33
Z? + 597 + 86

The zeros of the numerator and denominator are {33} and {10, 28} respectively, which are exactly
equal to A4 and Ap.

3.4.1 Analysis

In order to compute the sets A4 and Ap, Protocol 3 needs access to the values of setSize and
recData|] at both A and B. Assuming that reconcile() is executed by B, then only A’s data
needs to be obtained. Thus, B needs to obtain 7 elements of IF, plus an extra b bits to specify
setSize. According to the Expanded Finite Field approach of Section 3.3, ¢ can be chosen so that
g < 2%, To complete the reconciliation, B must send to A the contents of A 4, which requires the

10



transmission of an extra m 4 length-b bit-strings. This leads to a total communications complexity
of:

b+1)m+b+bma=Mm+ma+1)b+m

If m is chosen near m = ma + mp, then this is just over twice the cost of simply sending the
missing vectors. Section 4 compares these results to the information theoretic bounds.

The computational complexity of Protocol 3 has two components: the cost of evaluating the
characteristic polynomials Xg,(Z) and Xg,(Z) at the sample points, and the cost of interpolating
and factoring. The cost of evaluating the characteristic polynomial of the set S 4 at 7 sample points
is O(|S|m). However, the values of the characteristic polynomials can be maintained incrementally
as the set Sy is built up, with a computational cost of O(m) per insertion and deletion, as was
done in Protocol 2. Moreover, the computation of the sample values does not have to be redone
for every run of the reconciliation protocol.

The cost of interpolation using Gaussian elimination to solve the system of linear equations is
O(m?31g q) bit operations. It may be possible to reduce the exponent using fast linear equation
solvers, or by choosing special evaluation points (as is done for FFT), but the fact that the linear
equations may be singular makes these approaches somewhat difficult.

The cost of root finding using the simple algorithm given in Appendix A is O(m®lgq) bit
operations. Again asymptotically faster algorithms may be used to improve the exponent, but
both linear equation solving and root finding exponents must be reduced to improve the asymptotic
complexity of O(m?1gq).

3.5 Probabilistic Verification

The discussion until now has assumed that there is a known bound 77 on m. In the absence of
such a bound, the hosts need to detect that enough samples have been taken to recover the rational
function XA , (Z)/XA,(Z). The following theorem suggests how this might be done.

Theorem 4 Let f(Z) and g(Z) be distinct monic rational functions over Fy such that the sum of
the degrees of the numerator and the denominator is no more than m. If k is a randomly chosen
element of some subset E C F,, then the probability that f(Z) and g(Z) take on the same values
at Z =k is less than or equal to (m — 1)/|E|.

This follows from the fact that distinct monic rational functions with the given degree bounds
cannot agree on more than m — 1 points, which follows from Theorem 3.

Theorem 3 can be used to test whether the rational function recovered from a given set of sample
points is in fact equal to XA , (Z) /XA, (Z). In particular, let f(Z) be XA ,(Z)/XA,(Z) and g(Z) be
a rational function reconstructed from some number of samples of f(Z). Furthermore, assume that
we’re using the Extended Finite Field approach with ¢ = 2°*!. Choose E to be the size 2° subset
of IF, not used for representing the length-b bit-strings. By Theorem 4, the reconciling hosts can
verify whether f(Z) = g(Z) by testing whether the two functions are equal on randomly selected
elements of E. Note that |S4| and |Sp| are trivial upper bounds on m 4 and mp respectively, and so
the probability of f(Z) and g(Z) being equal on a randomly selected point when the two functions
are not equal is bounded above by p = (|Sa| + |Sg| — 1)/2°, which is typically very small.

The approach described above requires sample points to be chosen at random, so both the
value and the sample point need to be sent for each sample, roughly doubling the number of bits
transmitted. In practice, a pseudo-random number generator could be used, allowing for a seed to
be sent instead of sending each individual sample point.
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The question remains of what protocol to use for transmitting sample points. One approach
would be for A to send sample points one at a time. Thus, B would maintain a rational function
9(Z) matching the sample points received so far. When B receives k samples in a row that confirm
the previous value of g(Z), then B accepts g(Z) as equal to f(Z), and factors the numerator and
denominator to recover A 4 and Ag. Until this happens, B continues to request more sample points
from A.

The probability that the above protocol terminates with g(Z) # f(Z) is bounded above by
mp®, where k is the number of samples taken. This is because the probability of getting a sequence
of £ matching sampled values in a row starting at the i-th sample when the two functions are not
equal is p¥. Since there are no more than m possible starting points for such a sequence, the overall
probability is less than mpF. This means that, for any given probability e, if k is chosen to be
[log,(e¢/m)], the probability of failure is less than e. Since m is not known a priori, we can use the
weak upper bound of |S4| + |Sp| to give a corresponding value of

k = [log,(¢/(|Sal + [SB])1- (6)

Thus, for example, to achieve a confidence level of 10~'? when reconciling sets of 32-bit bit-strings
whose combined size is less than 10000 would require 3 confirming samples.
The number of bits transmitted under this approach is bounded above by:

2b+1)m+b+bma+m+Ek

The extra m + k bits is due to the 1-bit messages that B needs to tell A to send the next sample.
The computational complexity is thus O(m*1gq), since the root finding needs to be repeated every
round.

The approach of sending a single sampled value at a time has the advantage of sending the
minimum number of samples. It has the disadvantage, however, of requiring 2(m + k) messages.
We can reduce the number of messages to 2[log.(m + k)| by increasing the number of samples sent
each round by a factor of c. Then, in the worst case scenario, the number of extra samples sent is
c(m + k). Note that Equation (6) can be used for selecting & in this case as well.

The communications complexity for this approach is bounded above by

2(b+1)em + b+ bma + [log.(m + k)]

which is approximately ¢ times the communications complexity of sending one sample at a time.
The computational complexity is O([log,(m + k)]m?1gq).

4 Information-Theoretic Bounds

The set reconciliation algorithms described in Sections 2 and 3 all have communications complexity
on the order of bm. In the following, we will show that bm is close to the best achievable communi-
cations complexity for both the subset reconciliation problem and for the general set reconciliation
problem.

Let N = |S4 N Sp|. Solving set reconciliation demands that host A discern mp integers from
the 2° — N — my4 that it might be missing. Symmetrically, host B must discern m 4 bit-strings
among 2 — N — mp possibilities. This gives the following information-theoretic lower bound on
Lirans, the number of bits that need to be transmitted between A and B for reconciliation:
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20 — N — 26 - N —
A i B G I (")

If m = m4 + mp is held constant then this expression is minimized when m4 or mpg is zero, as
appropriate. This follows from the following well-known identity (s.f.r. [18]):

G2 ®

which is true whenever n,j,k > 0 and j + & < n. Assuming, without loss of generality, that
|Sa| > |Sp| then substituting n = 2 — N —my, j = mp, and k = m4 eventually yields:

e > 18] (27N, )

When 2° is at least twice as large as either host set, then the lower bound in inequality (9)
becomes (b — 1 —lgm) - m =~ bm — mlgm. Thus,

Tirans >1 lgm
- b

bm

Typically, lgm is significantly smaller than b, and so Iirans is at best within a small fraction of bm.

5 Related work

Set reconciliation is closely to the problem of error correction over a noisy channel. The main
difference between set reconciliation and error correction is that, in the most common model for
error correction, every data element has an index corresponding to its place in the transmission
order, and errors consist of in-place replacement of one datum with another. This index is stable,
in the sense that transmission errors on some elements do not affect the indices of the remaining
elements. In set reconciliation, there is no such stable index.

Error correction codes for in-place errors can be applied to the problem of set-reconciliation. In
particular, if we choose some ordering on the set B, of all length-b bit-strings, then a set S C By
can be represented as a single length-2° bit-string, where the ith bit of the bit-string is 1 iff
the ith element of By is in S. Thus, differences between two sets result in bitwise errors in the
corresponding bit-string representations. The length of this representation, however, makes this
approach computationally infeasible.

The spurious error correction model, introduced by Levenshtein [19], allows for errors to be
insertions or deletions of letters in addition to in-place replacements. A spurious error correction
algorithm can be applied to set reconciliation by treating a set S as a string consisting of the
elements of S listed in lexicographic order. Insertions and deletions from S then correspond to
insertions and deletions from the sorted string.

Many methods have been proposed in the literature for both traditional error correction and
spurious error correction [20, 21, 22, 23, 24, 25, 26, 27, 28]. In line with the former model, Metzner
and Kapturowski [24] examined the problem of correcting disagreeing pages between two different
versions of a file using a minimum communication complexity. They presented an algorithm that,
with high probability, corrected most cases of up to A disagreeing pages using a single message of A
signatures, where the size of each signature was logarithmic in the overall file size n. Abdel-Ghaffar
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and Abbadi [26] used Reed-Solomon codes [29] to provide a deterministic algorithm for the same
problem that required at most 2A signatures.

In the direction of spurious error correction, Schwarz, Bowdidge, and Burkhard [25] extended
Metzner and Kapturowski’s result to the case of extraneous or missing pages. Using a divide-and-
conquer algorithm, they developed a multi-round protocol for reconciling corrupted copies of a file.
Recently, Cormode, Paterson, Sahinhalp, and Vishkin [27] provided a probabilistic algorithm that

asymptotically requires O(m lg(n/m)lgm) communication bits for a bound 7 on the size m of the
difference between two length-n files.

In this paper, we solved the set reconciliation problem using a single message of roughly 72(2b+1)
bits to reconcile two (arbitrarily large) sets that differ by at most 7 length-b bit-strings. We also
provided a comparable probabilistic protocol when a bound m is not known. It is important to
note, however, that our results are not strictly comparable to these related results.

6 Future Work

Set reconciliation can be applied to a number of different reconciliation problems. One important
example is the reconciliation of sets where the data elements are variable length bit-strings. This
case can be dealt with by running the set reconciliation algorithm on hashes of the actual data
elements instead of the data elements themselves. The result of the reconciliation can then be used
to determine which data elements need to be transferred. The problem with the hash approach is
that it cannot be done non-interactively, since it has a second stage after the reconciliation where
the actual missing data is sent. Another alternative is to break variable length data elements
into fixed-length chunks, and to annotate those chunks with indexing information that allows the
original elements to be reconstructed from the chunks. These ideas need to be investigated in more
detail.

Another common class of reconciliation problem is the reconciliation of (key,value) databases.
Such a database can be reconciled by treating each (key,value) pair as a single (possibly variable-
length) bit-string. However, it may be possible to take advantage of the fact that in most cases,
the keys of such a database change more frequently than the values. It may be useful to consider
hybrid protocols that combine set reconciliation with existing error-correction techniques for fixing
in-place corruptions of ordered data.

The probabilistic scheme in Section 3.5 also needs further work. The analysis of the convergence
of that scheme is conservative and can be substantially improved. Also, we believe that it is possible
to augment the probabilistic algorithm we presented so as to converge much more quickly.

Protocol 3 has been implemented using Victor Shoup’s well known NTL package[30]. Work is
in progress to investigate various applications and to see how effective these protocols can be in
practice in reducing the communication load of gossip protocols.

The key to both protocols is the representation of a set by its characteristic polynomial. This
use of polynomials is reminiscent of the use of polynomials in Shamir’s secret sharing protocol [31].
The relationship between secret sharing and set reconciliation also deserves further study.

7 Conclusion

We have examined the problem of reconciling two related sets, stored at separate hosts, with low
communication complexity. We have presented a protocol for the set reconciliation generalized
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from a special case in which the data stored at one host is a subset of the data stored at the other
host.

Perhaps the most surprising result in the paper is the fact that these protocols can be used
non-interactively if given a bound on the number of elements that differ between the two hosts.
Moreover, the communication complexity of these protocols is remarkably close to the complexity
of set reconciliation when each host knows a priori which elements the other host is missing.
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A Root Finding of Polynomials

Assume we are given a polynomial f(Z) of degree d over a finite field F,. This appendix shows
how to determine if all the zeros of f(Z) are distinct and lie in F,; and, if so, how to find them
quickly. We show how to use classical algorithms to perform zero finding in expected O(d®lgq)
field operations. More sophisticated algorithms improve the asymptotic complexity to as low as
0O(d*#21g q) [16], although their basic structure is similar to that presented here and their practical
benefits are not clear. All of these results are well known (see for instance, [12, 13, 14, 15]). They
are included here for completeness.

The particular type of root finding needed by the set reconciliation protocols involves three
steps. First, determine if f(Z) is square free. Second, verify that all irreducible factors of f(Z) are
linear. And finally, find the linear factors of f(Z).

We can determine if f(Z) is square-free by computing the GCD (greatest common divisor) of
f(Z) and its derivative f'(Z). Using the Euclidean algorithm and classical polynomial algorithms,
this can be done in O(d?) operations in F,. Verifying that f(Z) is the product of d linear factors can
also be done by computing GCD’s. Note that all elements of I, are zeros of Z¢—Z. Thus, Z9—Z is
the product of monic linear polynomials over IF,. If f(Z) is square free, it is the product of a linear
polynomials only if f(Z) divides Z¢ — Z. Checking for such a divisibility using classical division
would require O(d - q) operations. However, this complexity can be reduced to O(d?1gq) by using
repeated squaring to compute h(Z) = Z? (mod f(Z)) and then testing if h(Z)—Z =0 (mod f(Z)).
The repeated squaring stage dominates the time complexity, since O(lgp) squarings are required,
and each squaring involves a polynomial multiplication followed by finding the remainder mod
f(Z). Using classical algorithms each multiply and remainder takes O(d?) time. Thus, O(d?lgp)
field operations will be required in all for the verification of divisibility.

Finally, we need to find the linear factors of f(Z). This is done using probabilistic techniques
as follows. We consider two different cases for the field F, (corresponding to the possible choices
for use in our set-reconciliation protocols): one where ¢ is a prime and the other where g = 2t
When ¢ is a prime, note that the elements of IF, are zeros of

217 =(2% +1)-Z-(2"F —1).
So, almost half of the elements of F, are zeros of R(Z) = Z Eal )

A polynomial with similar properties can also be constructed for the field Fy,. Denote by R(Z)
the polynomial

RZ)=2""+22" 4.+ 2*+ 22+ 2.
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Over the field Fy, we have

R(Z)- (R(Z) +1) = R(2)* + R(Z),
=72+ 727 4. + 22+ R(Z),
=72 1z

So, all the elements of F,; are zeros of R(Z) - (R(Z) + 1), and each element is either a zero of R(Z)
or of R(Z) + 1.

To determine the zeros of f(Z), we chose a random element of a € F;, and compute the greatest
common divisor of f(Z) and R(Z — a), which will have almost half the degree of f(Z). Applying
this technique recursively on the two factors of f(Z), with different values for a will further split
the polynomial, ultimately into linear factors. In total, the expected number of GCD required will
be O(d). For odd g, the first GCD is done via repeated squaring in modulus, as in the previous
paragraph. For ¢ = 2¢, the remainder of each of the terms of R(Z) is computed (from lowest to
highest degree) and then summed.

B Implementation of Protocol 3

The first question to be answered in any implementation of the set reconciliation protocol is what
finite field to use. Since the data sets, consist of bit strings of length b, the most efficient field to
use, information theoretically, would be one of the form Fom. Unfortunately, arithmetic in these
fields can be quite slow, when special hardware support is not available. Thus, it is preferable to
use [, where ¢ > 2% is a prime number.

We have implemented the set reconciliation protocol 3 using Shoup’s well-known NTL pack-
age [30]. Instead of using the Expanded Finite Field approach, the implementation instead does
some extra bookkeeping to handle anomalous evaluation points. The bookkeeping information is
1 bit per sample point, so it has the same communication complexity as the protocol described in
the paper. The implementation also uses a finite field with an odd number of elements. Table 1
shows the number of seconds of computation time required by this protocol on a 550Mhz Pentium
III processor for different size data set words, and different numbers of discrepancies. In this test-
ing, we have assumed that the reconciliation data was maintained incrementally and thus did not
measure the time required to compute the values of the characteristic polynomials.

Since the word sized used for the data set elements is a multiple of 32, the the prime numbers
used in the finite field arithmetic were always one word larger than the data words. This is typical
of most applications of the protocol, since users would most likely not appreciate having their data
set elements restricted to 31, 63 or 127 bits.

It is worth noting that even with fairly large data set words (256 bits), and large numbers of
discrepancies (200), the amount of time required to compute the missing elements is relatively small
(less than a minute) and that the growth in time complexity is less than cubic in the size of the
discrepancy.

18



—32 —64 96 128 — 160 — 192 —224 —256 288 320 352 384 416 448 480 512

900

800

600 -

500 +

Time

400 4

300 4

200 -

100

————
0 T T P T

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
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b/ A 40 80 120 160 200 240 280 320 360
32 0.078 0391  0.907 1.984 3.438 5.406 8.219 11.610  15.875
64 0.219 0921 1.922 4.093 6.532 9.844 15.360  21.031  28.187
96 0.453 1.719  3.406 6.734 10.516  15.704  24.672  33.391  44.953
128 0.750 2953 5.672 10.579 16.406 24.375 36.656 47.375  64.250
160 1.359  5.110 10.547 18703  25.375  36.422  53.422  77.828  92.750
192 1.453  6.078 11.688 22.031 33.703 50.266  72.031  97.750 125.656
224 2734 8531 15578 31.218 45.015 63.110 97.328 123.672 157.062
256 3.046 10.985 20.875 37.875 56.406  75.985 120.141 153.610 196.797
288 3.703  13.265 26.453 47.656 68.234 100.906 148.047 188.906 239.125
320 4.547 18.453 30.969 58.891 82390 122.203 176.969 217.671 285.000
352 5.969 20.172 38.641 72.875 100.109 144.187 209.421 269.156 337.406
384 7.469 26.828 50.063 84.938 120.312 165.828 250.672 319.782 396.250
416 9.563 34.766 55.469 102.609 147.422 203.797 305.36 376.579 470.765
448 10.765 37.813 68.219 118.109 169.281 228.922 341.907 439.407 545.718
480 12.078 44.421 75.328 137.125 189.750 259.984 388.75 487.688 599.297
512 15.844 51.969 97.985 166.297 225.656 304.421 455.813 571.750 705.359

Figure 1: Computational time needed to reconcile A vectors each of size b bits on a 550MHz
Pentium IIT processor.
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Protocol 3 Set reconciliation protocol given upper bound on m

Each host evaluates the following functions, assuming that m is an upper bound on m, the size of the
symmetric difference between S4 and Sp. We also assume that hosts A and B agree on a field F,, and that
E = {ki,k2,... ,km} C F; is some set of size ™ that does not overlap with S4 or Sg. The notation H.var
is used to refer to the value of var at host H.

We initialize setSize to 0 and recDatali] to 1, for all i from 1 to .
addElement(elt)

1. Increment setSize by 1.

2. For each i = 1...m compute
recData[i] = recData[i] x (k; — elt)
over the field I, .

removeElement(elt)

1. Decrement setSize by 1.

2. For each i = 1...m compute
recDatafi] = recData[i]/ (k; — elt)
over the field IF,.

reconcile()

1. Initialize d = A.setSize — B.setSize.
2. Define the support set V' to be:

{(k;, A.recData[i]/ B.recDatali]) | k; € E}.

Then, using the technique described in Section 3.2, find a monic rational function P(Z)/Q(Z)
that satisfies V' such that:

degree(P(Z)) + degree(Q(Z)) <
degree(P(Z)) — degree(Q(Z2)) =

3

S

3. Compute Ay and Ap as the zeros of the normalized polynomials % and

QZ .
m respectively.
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