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ABSTRACT

Many encrypted database (EDB) systems have been pro-
posed in the last few years as cloud computing has grown
in popularity and data breaches have increased. The state-
of-the-art EDB systems for relational databases can handle
SQL queries over encrypted data and are competitive with
commercial database systems. These systems, most of which
are based on the design of CryptDB (SOSP 2011), achieve
these properties by making use of property-preserving en-
cryption schemes such as deterministic (DTE) and order-
preserving encryption (OPE).

In this paper, we study the concrete security provided by
such systems. We present a series of attacks that recover the
plaintext from DTE- and OPE-encrypted database columns
using only the encrypted column and publicly-available aux-
iliary information. We consider well-known attacks, includ-
ing frequency analysis and sorting, as well as new attacks
based on combinatorial optimization.

We evaluate these attacks empirically in an electronic med-
ical records (EMR) scenario using real patient data from
200 U.S. hospitals. When the encrypted database is oper-
ating in a steady-state where enough encryption layers have
been peeled to permit the application to run its queries,
our experimental results show that an alarming amount of
sensitive information can be recovered. In particular, our at-
tacks correctly recovered certain OPE-encrypted attributes
(e.g., age and disease severity) for more than 80% of the pa-
tient records from 95% of the hospitals; and certain DTE-
encrypted attributes (e.g., sex, race, and mortality risk) for
more than 60% of the patient records from more than 60%
of the hospitals.
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1. INTRODUCTION

As an increasing amount of private data is being collected
and stored by corporations and governments, database se-
curity has become a critical area in both research and in-
dustry. High-profile data breaches like the Anthem breach
in which a database of 80 million healthcare records was
compromised or the Community Health Systems breach in
which 4.5 million HIPAA protected (non-medical) records
were stolen have fueled interest in database encryption tech-
niques.

While encryption could offer some protections—particularly
when the database is exfiltrated from disk—it also has seri-
ous limitations. In particular, since an encrypted database
cannot be queried, it has to be decrypted in memory which
means the secret key and the database are vulnerable to
adversaries with memory access. In cloud settings, where
a customer outsources the storage and management of its
database, encryption breaks any service offered by the provider.

Encrypted search. Motivated by these limitations of tra-
ditional encryption, the area of encrypted search has emerged
as one of the most active and potentially impactful areas
of cryptography research. Encrypted search is concerned
with the design and analysis of cryptographic techniques for
searching on encrypted data; including both structured and
unstructured data. There are various approaches to search
on encrypted data including searchable symmetric encryp-
tion (SSE) [20, 37], fully-homomorphic encryption (FHE)
[23], oblivious RAMs (ORAM) [24], functional encryption
[15], and property-preserving encryption (PPE) [11,12]. All
these approaches achieve different trade-offs between secu-
rity, query expressiveness, and efficiency.

Leakage and inference attacks. The most secure en-
crypted search solutions are based on FHE and ORAM but
are currently too inefficient to be of practical interest. There-
fore, all known practical solutions leak some information.
This leakage comes in two forms: setup leakage, which is
revealed by the encrypted database (EDB) itself; and query
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leakage which is revealed from the EDB and the query pro-
tocol.

To better understand the impact of this leakage, an im-
portant research direction in encrypted search, initiated by
Islam, Kuzu and Kantarcioglu [25], is the design of inference
attacks which try to recover information about the data or
queries by combining leakage with publicly-available infor-
mation (e.g., census data or language statistics). The most
well-known example of an inference attack is frequency anal-
ysis which is used to break classical ciphers. Another ex-
ample is the query-recovery attack of Islam et al. against
searchable symmetric encryption (SSE) schemes [25].

PPE-based EDBs. In the context of structured data
and, in particular, of relational databases, the state-of-the-
art encrypted search solutions are based on PPE schemes
like deterministic and order-preserving encryption. Roughly
speaking, a PPE scheme is an encryption scheme that leaks
a certain property of the plaintext. For example, an order-
preserving encryption (OPE) scheme encrypts a set of mes-
sages in such a way that their ciphertexts reveal the order
of the messages (i.e., the order property). A deterministic
encryption (DTE) scheme encrypts a set of messages in such
a way that their ciphertexts reveal whether they are equal
or not (i.e., the equality property).

The CryptDB system [35] first showed how to use PPE
to construct an encrypted database system that supports
a subset of SQL. The CryptDB design was adopted in the
more recent Cipherbase [10] and Encrypted BigQuery sys-
tems [2]. The former uses a combination of trusted hardware
and cryptography to efficiently support full SQL. At a very
high-level, each DB operation can be either done in a secure
co-processor or over encrypted data using the same approach
as CryptDB. In this work, when referring to Cipherbase, we
implicitly mean the variant where the operations in question
are not executed in the secure co-processor.

These CryptDB-like systems have several advantages. In
particular, they are competitive with real-world relational
database systems and they require a minimal number of
changes to the standard/legacy database infrastructure. The
key to their efficiency and “legacy-friendliness” is the use of
PPE which, roughly speaking, allows them to operate on
encrypted data in the same way as they would operate on
plaintext data. This enables fast operations on encrypted
data and the use of standard database algorithms and opti-
mizations.

1.1 Our Contributions

The use of PPE has important consequences on the se-
curity of encrypted database systems. Specifically, since
PPE schemes leak a non-trivial amount of information, it
is well-known that PPE-based designs like CryptDB and its
variants are vulnerable to inference attacks. The extent to
which these systems are vulnerable, however, has never been
investigated.

In this work, we study concrete inference attacks against
EDBs based on the CryptDB design. At a very high-level,
these systems encrypt each DB column with layers of differ-
ent encryption schemes. When queried, the system decrypts
the layers until it reaches a layer that supports the neces-
sary operation. In particular, this means that columns that
support either range or equality queries are left encrypted
with OPE or DTE, respectively. With this in mind, we
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consider inference attacks that take as input an OPE- or
DTE-encrypted column and an auxiliary and public dataset
and return a mapping from ciphertexts to plaintexts.

We stress that EDB systems are not designed to provide
privacy but the much stronger requirement of confidentiality.
As such, for an attack to be successful against an EDB it is
not required to de-identify the records of the DB as would
be the case, say, against a differentially-private DB [21]. In
the setting of EDBs, an attack is successful if it recovers
even partial information about a single cell of the DB. As
we will see later, our attacks recover a lot more.

Concrete attacks. We study the effectiveness of four
different attacks. T'wo are well-known and two are new:

e frequency analysis: is a well-known attack that decrypts
DTE-encrypted columns given an auxiliary dataset that
is “well-correlated” with the plaintext column. The extent
of the correlation needed, however, is not significant and
many publicly-available datasets can be used to attack
various kinds of encrypted columns with this attack.

e (,-optimization: is a new family of attacks we introduce
that decrypts DTE-encrypted columns. The family is pa-
rameterized by the ¢,-norms and is based on combinato-
rial optimization techniques.

e sorting attack: is an attack that decrypts OPE-encrypted
columns. This folklore attack is very simple but, as we
show, very powerful in practice. It is applicable to columns
that are “dense” in the sense that every element of the mes-
sage space appears in the encrypted column. While this
may seem like a relatively strong assumption, we show
that it holds for many real-world datasets.

e cumulative attack: is a new attack we introduce that de-
crypts OPE-encrypted columns. This attack is applicable
even to low-density columns and also makes use of com-
binatorial optimization techniques.

Evaluating inference attacks. As discussed above, most
inference attacks need an auxiliary source of information and
their success depends on how well-correlated the auxiliary
data is with the plaintext column. The choice of auxiliary
data is therefore an important consideration when evalu-
ating an inference attack. A strongly correlated auxiliary
dataset may yield better results but access to such a dataset
may not be available to the adversary. On the other hand,
misjudging which datasets are available to the adversary can
lead to overestimating the security of the system. An addi-
tional difficulty is that the “quality” of an auxiliary dataset
is application-dependent. For example, census data may be
well-correlated with a demographic database but poorly cor-
related with a medical database.

So the question of how to empirically evaluate inference
attacks is non-trivial. In this work, we use the following
methodology: (1) we choose a real-world scenario where the
use of EDBs is well-motivated; (2) we consider encrypted
columns from real-world data for the scenario under consid-
eration; and (3) we apply the attack on the encrypted col-
umn using any relevant publicly-available auxiliary dataset.

Empirical results. For our empirical analysis, we chose
databases for electronic medical records (EMRs) as our mo-
tivating scenario. Such medical DBs store a large amount of



private and sensitive information about both patients and
the hospitals that treat them. As such they are a primary
candidate for the real-world use of EDBs and appear fre-
quently as motivation in prior work.

To evaluate our attacks, we consider DTE- and OPE-
encrypted columns for several attributes using real patient
data from the U.S. hospitals provided by the National In-
patient Sample (NIS) database of the Healthcare Cost and
Utilization Project (HCUP). *

Following are the highlights of our results:

e (y-optimization (vs. DTE-encrypted columns): the attack
recovered the mortality risk and patient death attributes
for 100% of the patients for at least 99% of the 200 largest
hospitals. It recovered the disease severity for 100% of the
patients for at least 51% of those same hospitals.

e frequency analysis (vs. DTE-encrypted columns): the at-
tack had the same results as £2-optimization.

e sorting attack (vs. OPE-encrypted columns): the attack
recovered the admission month and mortality risk of 100%
of patients for at least 90% of the 200 largest hospitals.

e cumulative attack (vs. OPE-encrypted columns): the at-
tack recovered disease severity, mortality risk, age, length
of stay, admission month, and admission type of at least
80% of the patients for at least 95% of the largest 200
hospitals. For 200 small hospitals, the attack recovered
admission month, disease severity, and mortality risk for
100% of the patients for at least 99.5% of the hospitals.

Discussion. Our experiments show that the attacks con-
sidered in this work can recover a large fraction of data
from a large number of PPE-based medical EDBs. In light
of these results it is clear that these systems should not be
used in the context of EMRs. One may ask, however, how
the attacks would perform against non-medical EDBs, e.g.,
against human resource DBs or accounting DBs. We leave
this as important future work but conjecture that the at-
tacks would be at least as successful considering that much
of the data stored in such DBs is also stored in medical DBs
(e.g., demographic information).

We also note that even though the attacks can already re-
cover a considerable amount of information from the EDBs,
the results presented in this work should be viewed as a lower
bound on what can be extracted from PPE-based EDBs.
The first reason is that the attacks only make use of leakage
from the EDB and do not exploit the considerable amount
of leakage that occurs from the queries to the EDB. The sec-
ond reason is that our attacks do not even target the weakest
encryption schemes used in these systems (e.g., the schemes
used to support equi- and range-joins).

2. RELATED WORK

Deterministic encryption was first formally studied by Bel-
lare, Boldyreva and O’Neill in [11], where a security defini-
tion as well as various constructions were provided. OPE
was introduced by Agrawal, Kiernan, Srikant and Xu [7] and

We stress that we strictly adhered to the HCUP data
use agreement. In particular, our study is not concerned
with the problem of de-anonymization. The data was not
de-anonymized nor any attempt was made to do so.
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studied formally by Boldyreva, Chenette, Lee and O’Neill
in [12] and Boldyreva, Chenette and O’Neill [13]. In par-
ticular, it was shown in [12] that all (non-interactive) OPE
schemes must leak more than the order. The work of Popa,
Li and Zeldovich [34] describes an interactive protocol for an
OPE-like functionality that leaks at most the order. The ef-
ficiency of this protocol was later improved by Kerschbaum
and Schroepfer [29]. In [14], Boneh, Lewi, Raykova, Sa-
hai, Zhandry and Zimmerman construct a (non-interactive)
order-revealing encryption (ORE) scheme that leaks at most
the order. The difference between OPE and ORE is that in
the latter ciphertexts can be compared using an arbitrary
algorithm whereas in OPE it must be the standard compar-
ison operation.

The CryptDB system [35] was the first to support a large
fraction of SQL on encrypted data. The CryptDB-design
was later adopted by the Cipherbase [10] and Encrypted
BigQuery systems [2]. Akin and Sunar [8] describe attacks
that enable a malicious database administrator to recover
plaintexts from CryptDB through a combination of passive
monitoring and active tampering with the EDB.

Frequency analysis was first described by the Arab philoso-
pher and mathematician al-Kindi in the ninth century [9].
Techniques for recovering plaintext encrypted with substi-
tution ciphers using language statistics are well-known (see
for example pp.245-250 of [32]). Brekne, Arnes and Qslebg
[16] describe frequency attacks for recovering IP addresses
anonymized under a prefix-preserving encryption scheme [38].

Islam et al. [25] described the first inference attack against
an encrypted search solution. This attack, referred to as
the IKK attack, exploits the access pattern leakage of SSE
constructions together with auxiliary information about the
frequencies of keyword pairs and knowledge of a subset of
client queries (in plaintext) to recover information about the
remaining queries. In comparison, the attacks we consider
here: (1) recover the database, as opposed to queries; and (2)
require no knowledge of any queries (neither in plaintext nor
encrypted). Furthermore, a recent study by Cash, Grubbs,
Perry and Ristenpart [18] shows that the accuracy of the
IKK attack is so low that it is not usable in practice (unless
the adversary already knows most of the underlying data).
In contrast, the attacks considered in this work are highly-
accurate and very efficient. The fact that our attacks are
more powerful than the IKK attack is natural since PPE
schemes leak considerably more than SSE schemes.

Sanamrad, Braun, Kossman and Venkatesan [36] also con-
sider the security of OPE schemes in the context of en-
crypted databases. They propose a set of security defini-
tions and discuss previously-known attacks (e.g., frequency
analysis and sorting). Unlike standard security definitions,
however, the security notions proposed in [36] are attack-
specific (e.g., they define security only against frequency
analysis) and guarantee only one-wayness; as opposed to
standard cryptographic notions which guarantee that partial
information is protected. Finally, [36] also proposes deter-
ministic and probabilistic OPE variants. The deterministic
variant is still vulnerable to our attacks (albeit requiring
larger encrypted columns).

There is an extensive literature on OPE variants including
probabilistic OPE, modular OPE, etc. [19,22,26,27,31, 39].
As far as we know, none of these constructions are used in
any EDB system. We leave it as future work to assess the
efficacy of our attacks against these variants.



3. PRELIMINARIES

Relational databases. A relational database is a collec-
tion of tables where each row corresponds to an entity (e.g.,
a customer or an employee) and each column corresponds
to an attribute (e.g., age, height, salary). For any given
attribute, we refer to the set of all possible values that it
can take as its space. The attribute space of a column is
the space of that column’s attribute. If a column supports
equality or range queries, then we refer to it as an equality
or range column. The structured query language (SQL) is a
special-purpose language for querying relational databases.

Datasets. A dataset d = (di,...,dn) is a sequence of
elements from a universe . We assume, without loss of
generality, that every space D is totally ordered. We view
the histogram of a dataset d as a |D|-dimensional vector over
N> with, at position ¢, the number of times the ith element
of D appears in d. We denote by Hist(d) the operation that
computes the histogram of a dataset d. The cumulative dis-
tribution function (CDF) of a dataset d is a |D|-dimensional
vector over N>o with, at position ¢, the number of times
the first through ith elements of D that appear in d. We
denote by CDF(d) the operation that computes the CDF of
a dataset d. The CDF of d is the vector f such that for
all i € [n], fi = >75_, hj, where h = (h1,...,hy) is the
histogram of d.

We denote by Unique(d) the dataset that results from re-
moving all duplicates in d (i.e., from keeping only the first
occurrence of every element in d). The rank of an element
d € D in a dataset d is the position of its first occurrence in
difd edand 0if d ¢ d. We denote the rank of d in d by
Rankq(d).

We will often need to sort datasets. The result of sorting
d by value is the sequence d’ = (d;;,...,d;,) such that
d;; < - - < d;,. We denote this operation d’ + vSort(d).
When dealing with the histogram h of a dataset d over D,
we identify the coordinates of h with the elements of D.

Encryption. A symmetric encryption scheme SKE =
(Gen, Enc, Dec) is a tuple of three algorithms that work as
follows. Gen takes as security paramater as input and re-
turns a secret key K; Enc takes as input a key K and a
message m and returns a ciphertext c; and Dec takes as in-
put a key K and a ciphertext ¢ and returns a message m.
The standard notion of security for encryption is security
against chosen-plaintext attacks (CPA). We refer the reader
to [28] for a detailed description of this notion. Here, we
only mention that it is well-known that for symmetric-key
encryption, CPA-security can only be achieved if Enc is ei-
ther stateful or randomized.

Deterministic encryption. A symmetric DTE scheme
DTE = (Gen, Enc,Dec) is a symmetric encryption scheme
for which Enc is not randomized; that is, each message m is
mapped by Enc to a single ciphertext under a key K.

Order-preserving encryption. A symmetric OPE scheme
OPE = (Gen, Enc,Dec) is a symmetric encryption scheme
with the following property: if mi > mo then Encx(m1) >
Enck (m2); if m1 = ma then Enck(m1) = Enck(m2); and if
m1 < mz then Enck(m1) < Enck(m2).

Additively homomorphic encryption. colorred A sym-
metric additively homomorphic encryption (AHE) scheme

AHE = (Gen, Enc,Dec) is a symmetric encryption scheme
with the added property that: Decx (Enck (m1)®Enck (mz2))
m1 + ma, where ® is an operation over the ciphertext space
of AHE and not necessarily addition.

Join encryption. The CryptDB system supports two
kinds of Join operations: equi-joins and range-joins. Equi-
joins are supported using a scheme EJOIN = (Gen, Enc, Dec)
which is a combination of DTE and hashing. Range-joins are
supported using an encryption scheme RJOIN = (Gen, Enc, Dec)
based on OPE. We note that after a join query (of either
kind), two joined columns are left encrypted under the same
key.

Searchable encryption. The systems also make use of
searchable encryption scheme SRCH = (Gen, Enc, Token, Dec)
for keyword search operations. In CryptDB, this is instan-
tiated with a variant of the scheme of the scheme of Song,
Wagner and Perrig [37].

Onion encryption. Popa et al.use the term onion to refer
to the composition of encryption schemes. For example,
given two encryption schemes SKE' = (Gen', Enc',Dec')
and SKE? = (Gen? Enc?, Dec?) the SKE' o SKE? encryption
of a message m is defined as

ct = Enck, (Enck,(m)).

3.1 PPE-based Encrypted Databases

We recall high-level architecture of EDB systems based
on the CryptDB design. The system is composed of three
entities: an application App, a proxy Prx, and a server
Srv. The application and proxy are trusted while the server
is untrusted. To create an encrypted database EDB from
a database DB, the proxy generates a master secret key
msk and uses it to encrypt each table as follows. First,
an anonymized schema is created where the attributes for
each column are replaced with random labels. The map-
ping between the attributes and their labels is stored at
the proxy. Then, each cell is encrypted using four differ-
ent onions. More specifically, the following four onions are
used

e FEquality onion: encrypts a string s as
ct = EncEé?'N (Enc?{TDE (Enc?{f (s))) ;
e Order onion: encrypts a string s as

ct = EncRoN (Enc?fgE (Enc??sE (s))) ;

Koy

e Search onion: encrypts a keyword w as

ct = Enci(RsCH (w);

e Add onion: encrypts an integer ¢ as
AHE (-
ct = Enck, (l);

To support queries on encrypted data, the encrypted cells
in the EDB are decrypted down to a certain layer. This
process is referred to as peeling in [35] and every cell in a
given column is peeled to the same level. The proxy keeps
track of the layer at which each column is peeled.

To query an encrypted database the application issues a
SQL query that is rewritten by the proxy before being sent to



the server. In the new query, each column name is replaced
with its random label and each constant is replaced with a
ciphertext determined as a function of the semantics of the
query. More precisely, for each type of operation the proxy
does the following:

e cquality: v is replaced with ¢t = DTE.Enck (v);

e range: v is replaced with ct = OPE.Enck (v);

e search: v is replaced with tk = SRCH.Token g (v);
e addition: v is replaced with ¢t = AHE.Enck (v);
e join: v is replaced with ct = EJOIN.Enck (v);

After re-writing the query, the proxy checks the onion
levels of the relevant columns to determine if they need to
be peeled further. If so, it sends the appropriate decryption
keys to the server so that it peel the columns down to the
appropriate layer.

4. THREAT MODEL

An EDB system should protect a database against a va-
riety of threats. In this Section, we describe some of these

threats and propose an adversarial model that captures them.

In defining such a model, we make two things explicit: (1)
the goal of the attack; and (2) the information the adversary
holds when carrying out the attack.

4.1 Adversarial Goals

There are at least two kinds of attacks on EDBs which we
refer to as individual attacks and aggregate attacks.

Individual attacks. In an individual attack, the adversary
is concerned with recovering information about a row in the
database. For example, if the EDB is a medical database
where each row corresponds to a patient, then the goal of
the attack would be to recover information about a specific
patient, e.g., its age or name.

Aggregate attacks. In an aggregate attack, the adver-
sary wants to recover statistical information about the entire
database. Again, in the context of a medical database, this
could be information such as the total number of patients
with a particular disease or the number of patients above
a certain age. We note that, depending on the context,
aggregate attacks can be extremely harmful. For example,
hospitals do not disclose the number of cancer patients they
treat so as not to signal anything about the quality of their
cancer treatments.

4.2 Adversarial Information

PPE-based EDBs like [10,35] are designed to protect against

a semi-honest adversary that corrupts the server. Intu-
itively, this means that the adversary has access to every-
thing the server sees but cannot influence it—in particular,
it cannot make it deviate from the prescribed protocol. Since
the adversary has complete access to what the server sees,
it holds the encrypted database and can see the queries gen-
erated by the proxy.

Ciphertext-only. In this work, we focus on a consider-
ably weaker adversary which has access to the encrypted
database but not to the queries. We stress that this is a
much weaker adversary than what is typically considered in
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the literature and captures all the threats that database cus-
tomers are typically concerned with. This includes internal
threats like malicious database administrators and employ-
ees, and external threats like hackers, nation states, and
organized crime.

Steady state EDBs. We assume the adversary has access
to the encrypted database in steady state, which means that
the onions of each cell are peeled down to the lowest layer
needed to support the queries generated by the application.
Intuitively, one can think of the steady-state EDB as the
state of the EDB after the application has been running for
a while.

Auxiliary information. In addition to the encrypted
database, we assume our adversary has access to auxiliary
information about the system and/or the data. Access to
auxiliary information is standard in any practical adversar-
ial model since the adversary can always consult public in-
formation sources to carry out the attack. In particular, we
consider the following sources of auxiliary information:

o application details: the application running on top of
the encrypted database, possibly obtained from access-
ing the application (e.g., if it is a web service) or from
documentation;

e public statistics: publicly available statistics, for ex-
ample, census data or hospital statistics;

e prior versions: prior versions of the database, possibly
obtained through a prior data breach.

We stress that our experiments will make use of a different
subset of auxiliary sources and that none of the attacks need
access to all of these sources.

4.3 Attack Accuracy

When an adversary executes an inference attack, it re-
ceives as output an assignment from the encrypted cells to
the elements of the message space. Though our experiments
in Section 9 show that there are many attributes for which
the attacks are perfectly accurate, this is not always the case
and for low-accuracy attributes it could be difficult for the
attacker to distinguish correct assignments from incorrect
ones. We note, however, that the attacks can still be damag-
ing even for these attributes for the following reasons. First,
the adversary can still learn statistics about the attribute
which in some cases, like patient died during hospitalization
or major diagnostic category, can be very sensitive for hospi-
tals because it reveals information about the quality of their
care. Second, the results can still be used for phishing-style
attacks where the adversary only needs a small number of
successes.

S. ATTACKING DTE COLUMNS

We describe two attacks against DTE-encrypted columns.
The first is the well-known frequency analysis and the second
is a family of attacks we refer to as £p-optimization attacks.
The family is parameterized by the £, norms.

Here, C;, and My, are the ciphertext and message spaces
of the deterministic encryption scheme. We assume |Cy|
M| but if this is not the case we simply pad My. For
encryption schemes |Cy| is always at least |My|.



5.1 Frequency Analysis

Frequency analysis is the most basic and well-known in-
ference attack. It was developed in the 9th century and is
used to break classical ciphers. As is well-known, frequency
analysis can break deterministic encryption and, in partic-
ular, deterministically-encrypted columns. Given a DTE-
encrypted column c over Cy, and an auxiliary dataset z over
My, the attack works by assigning the ith most frequent el-
ement of ¢ to ith most element of z. For ease of exposition,
we assume that ¢ and z have histograms that can be strictly
ordered; that is, for all ¢ # j, ¥ # ¢; and m; # 7;, where
1 = Hist(c) and 7 = Hist(z). More precisely, the attack is
defined as:

e Frequency-An(c,z):

1. compute 1) < vSort(Hist(c));
2. compute 7 < vSort(Hist(z));
3. output a : Cx — My, such that

alc) = {

If the histograms are not strictly ordered (i.e., there are
i # j such that ¢; = ¢; or m; = 7;) one can still run the
attack by breaking ties in the sorting steps arbitrarily. In the
worst-case, each tie will be broken erroneously and induce
an error in the assignment so this will cause the attack to
err on a + b ciphertexts, where a and b are the number of
ties in Hist(c) and Hist(z), respectively. The attack runs in
O(|Ck| - log |Ck}) time.

m[Ranky (c)]
1

if cec;
ifcgec.

5.2 ¢,-Optimization

We now describe a family of attacks against DTE-encrypted
columns we refer to as {p-optimization. The family is pa-
rameterized by the ¢, norms. The basic idea is find an as-
signment from ciphertexts to plaintexts that minimizes a
given cost function, chosen here to be the ¢, distance be-
tween the histograms of the datasets. This has the effect
of minimizing the total mismatch in frequencies across all
plaintext/ciphertext pairs. The attack works as follows.

Given a DTE-encrypted column c over C; and auxiliary
information z over My, the adversary first computes the his-
tograms 1@ and 7 of ¢ and z, respectively. It then finds the
permutation matrix X that minimizes the ¢, distance be-
tween the ciphertext histogram 1 and the permuted auxil-
iary histogram X - 7. Intuitively, the attack finds the map-
ping of plaintexts to ciphertexts that achieves the closest
overall match of their sample frequencies. Note that this is
very different than frequency analysis which ignores the am-
plitude of the frequencies and only takes into account their
rank. More precisely, the attack is defined as follows:

e /,-Optimization(c, z):

1. compute 1 + Hist(c);

2. compute 7 < Hist(z);

3. output arg minxep, ||t — X - 7||p;
where P, is the set of n x n permutation matrices. Note that
in the /1-optimization attack, Step 3 can be formulated as

a linear sum assignment problem (LSAP) [17]. The LSAP
can be solved efficiently using the well-known Hungarian
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algorithm [30, 33] or any linear programming (LP) solver.
In our experiments we use the former which runs in time
O(n®). The precise LSAP formulation is:

n n
minimize E E Cij Xij
i=1 j=1

n
subject to ZXZ']' =1, 1<j5<ICy
i=1

Y Xij=1, 1<i<|[Cy
j=1

where the cost matrix C' = Cj; gives the cost of matching
plaintext j to ciphertext .

For p = 1, the costs are simply the absolute differences
in frequency, so we set C;; = |[¢; — 7;|. For 2 < p < oo,
however, Step 3 of the £,-optimization attack cannot be for-
mulated directly as a LSAP because the ¢, norm is not
a simple linear sum. Nevertheless, we show that it can
still be efficiently solved using fast LSAP solvers. To see
why, let fi : Rt — R be the function x — ¢/z and let
fa : Ny — N3¢ be the function v +— > v?. Then we
note that the ¢, norm of a vector can be written as

IVllp = fi(f2(v))-

Since fi1 is monotone increasing, the vector that minimizes
f1 0 fa2 is the vector that minimizes f2. It follows then that
for any vector v, the vector w with the minimum /¢, distance
from v is the solution to
arg minz |v; — w;|P.
i

As long as p < oo, this optimization problem can be for-
mulated as a LSAP with cost matrix C' such that C;; =
|v; — w;|P. The attack takes O(|Cx|*) time.

Remark on /,-optimization vs. frequency analysis. In
our experiments, we found that frequency analysis and #,-
optimization for p = 2,3 performed equally well. In fact,
for a fixed encrypted column and auxiliary dataset, they
decrypted same exact ciphertexts. On the other hand, fre-
quency analysis did consistently better than ¢;-optimization.
This raises interesting theoretical and practical questions.
From a theoretical perspective it would be interesting to
understand the exact relationship between frequency anal-
ysis and ¢p-optimization. Our experiments tell us that ¢;-
optimization is different from frequency analysis (since they
generated different results) but they did not distinguish be-
tween frequency analysis and f2- and f3-optimization. As
such, it would be interesting to either separate the attacks
or prove that they are equivalent for some p > 2.

From a practical perspective, the main question is what is
the motivation for ever using ¢,-optimization over frequency
analysis? The main reason is that £,-optimization not only
decrypts an encrypted column but, while doing so, also pro-
duces cost information about the different solutions it finds.
Like the cumulative attack we describe in Section 6.2, this
is due to its use of combinatorial optimization. As it turns
out, this extra information can be leveraged to attack “hid-
den” columns (i.e., for which we do not know the attribute);



something we cannot always do with frequency analysis. We
discuss this in more detail in Section 8.

6. ATTACKING OPE COLUMNS

In addition to the frequency information leaked by DTE,
order-preserving encryption also reveals the relative order-
ing of the ciphertexts. Here we describe two attacks on
OPE-encrypted columns that exploit this additional leakage
to recover even more of the plaintext data. Note that the
attacks only make use of order information so they work
even against columns encrypted with ORE [14] and interac-
tive order-preserving protocols [29,34]. In particular, since
all OPE instantiations necessarily leak more than just the
order [12], stronger attacks are likely possible against OPE-
encrypted columns.

Here, C;, and My are the ciphertext and message spaces
of the OPE scheme. We assume, without loss of generality,
that |Cy| = |My|. If this is not the case we pad M with
additional symbols until it holds.

6.1 Sorting Attack for Dense Columns

The first attack on OPE-encrypted columns is trivial and
applicable to all columns that satisfy a condition we call
density. We call an OPE-encrypted column d-dense, if it
contains the encryptions of at least a § fraction of its message
space. If § = 1, we simply say that the column is dense.

The attack is described in detail below and works as fol-
lows. Note that it does not require any auxiliary informa-
tion. Given an OPE-encrypted dense column c over Cy the
adversary simply sorts ¢ and My and outputs a function
that maps each ciphertext ¢ € c to the element of the mes-
sage space with the same rank. More precisely, the attack
is defined as:

e Sorting-Atk(c):
1. compute % + vSort(Unique(c));

2. compute 7 < vSort (Mk),
3. output a : Cx — My, such that:

] w[Ranky(c)]
ac) = {J_ g

if ¢ € c;
ifcec.

The attack runs in O(|Ck| - log|Cy|) time.

6.2 Cumulative Attack for Low-Density Columns

The main limitation of the sorting attack is that it is only
applicable to dense columns. To address this, we describe
a second attack for low-density OPE-encrypted columns we
refer to as the cumulative attack. The attack requires access
to auxiliary information and can recover a large fraction of
column cells (see Section 9.2 for details).

Intuition. Given a DTE-encrypted column, the adver-
sary learns the sample frequency of each ciphertext in the
column. These sample frequencies make up the histogram
for the encrypted column, and we showed in the previous
section how the adversary can use them to match the DTE
ciphertexts to their plaintexts by finding (¢, m) pairs where
c and m have similar frequencies.

Given an OPE-encrypted column, the adversary learns
not only the frequencies but also the relative ordering of
the encrypted values. Combining ordering with frequencies,
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the adversary can tell for each ciphertext ¢ what fraction
of the encrypted values are less than c¢. More formally, this
is known as the empirical cumulative distribution function
(ECDF, or simply CDF) of the data set.

In the cumulative attack, we leverage the CDF to improve
our ability to match plaintexts to ciphertexts. Intuitively, if
a given OPE ciphertext is greater than 90% of the cipher-
texts in the encrypted column c, then we should match it
to a plaintext that also is greater than about 90% of the
auxiliary data z. Although our early experiments showed
that CDF's alone enable very powerful attacks on OPE, we
can achieve even better results using both the CDF's and the
frequencies together. Here we use an LSAP solver to find
the mapping of plaintexts to ciphertexts that minimizes the
total sum of the mismatch in frequencies plus the mismatch
in CDF's across all plaintext/ciphertext pairs.

Overview of attack. The attack is detailed below and
works as follows. Given an OPE-encrypted column c over
Ci, and an auxiliary dataset z over My, the adversary com-
putes the histograms 1 and 7 and the CDFs ¢ and p of ¢
and z, respectively. It then finds the permutation that si-
multaneously matches both the sample frequencies and the
CDFs as closely as possible. More precisely, the attack is
defined as:

e Cumulative-Atk(c,z):

1. compute 9 « Hist(c) and ¢ « CDF(c);
2. compute 7 Hist(z) and p < CDF(Z);
3. output

[Mg |

argl)l(lé% ; (|'Z/)'L - X; - 71" + |<p¢ - X; - ,u’)

where P is the set of all |Cy| x |Ci| permutation matrices.
Note that, as in Section 5.2 above, Step 3 of this attack can
be formulated as an LSAP which can be efficiently solved
using the Hungarian algorithm. The precise LSAP formula-
tion is:

n n
minimize E E Cij Xij

i=1 j=1

n
subject to ZXZ']' =1, 1<j<I|Cy
i=1

S Xij=1, 1<i<|Cy
j=1

where the cost matrix C' gives the cost for mapping plaintext
m; to ciphertext ¢; as the sum of the mismatch in frequencies
plus the mismatch in cumulative frequencies:
2 2
Cij = i = mi|” + s — g

The attack runs in O(|Cy|?) time.

7. SIMULATING A MEDICAL EDB

To evaluate the attacks, we considered the scenario of an
EMR application and its associated database. We chose this
setting for several reasons.



First, medical DBs hold highly personal and sensitive in-
formation and are often covered by privacy regulations such
as the Health Portability and Accountability Act (HIPAA).
EMRs are vulnerable to insider and outsider threats and
are increasingly targeted by professional attackers includ-
ing state sponsored adversaries and organized crime. This
trend is illustrated by the recent attacks on Anthem—one of
the largest U.S. health insurance providers—which compro-
mised the health records of 80 million individuals. In fact,
the Ponemon Institute’s recent study on Privacy and Secu-
rity of Healthcare Data [1] reports that criminal attacks are
now the number one cause of healthcare data breaches with
a 125% growth in attacks reported in the last 5 years. As
such, the motivation to encrypt medical DBs is very strong.
In fact, medical DBs often appear as the standard moti-
vation in the encrypted database research literature (see,
e.g., [35]).

Another reason we chose this scenario is that a subset of
the data stored in EMRs (e.g., demographic data) is also
held in other types of sensitive DBs including human re-
sources DBs, accounting DBs, and student DBs. Informa-
tion stored in these DBs may also be covered by privacy
regulations such as the Family Educational Rights and Pri-
vacy Act (FERPA). Our results against medical DBs can
therefore tell us something about these other kinds of DBs.

7.1 Target Data

Throughout, we refer to the data we use to populate the
EDB as the target data. In our experiments we use data
from the National Inpatient Sample (NIS) database of the
Healthcare Cost and Utilization Project (HCUP) [3]. HCUP
makes available the largest collection of longitudinal hospi-
tal care data in the U.S. The NIS database—which includes
data on inpatients (i.e., patients that stay at a hospital for at
least one night) from all the hospital in the U.S.—is avail-
able starting from 1988. The database is made available
to researchers under controlled access: an online training
is required and a data use limitation agreement must be
signed before the data can be purchased and used. The NIS
database includes attributes such as age, drugs, procedures,
diagnosis, length of stay, etc. For our purposes, we only use
a subset of the attributes (mostly due to space limitations)
which we describe in Figure 1.

Max Min Mean SD
[ Large Hospitals | 121,664 | 12,975 | 24,486 [ 12,015
[ Small Hospitals 1, 309 404 756 253

Table 1: Size of hospitals in number of patients

In our experiments we use the data from a subset of 1050
hospitals in the 2009 HCUP/NIS database as our target
data. We note that any other year would have given similar
results. For all but one of our experiments we use the 200
largest hospitals but for the evaluation of the cumulative at-
tack against low-density columns we use data from 200 small
hospitals. The 200 small hospitals are the ones ranked (in
decreasing order) 701 through 900 in terms of patient-size.
Smaller hospitals had too few patients to attack (less than
400 and some even less than 10). The number of patients
in the 200 largest and the 200 small hospitals is shown in
Table 1.

Target attributes. We chose a subset of columns/attributes

from the 2009 HCUP/NIS dataset to attack. These at-

e Sex. Sex can be either male or female. The most prominent
feature of the sex attribute is that most hospitals have more
female patients than male patients. This is possibly due to
pregnancy, births, and the fact that women live longer. Sex is
universally used in all databases that store information about
people.

e Race. Race can have the following values: white, black,
Hispanic, Asian or Pacific Islander, Native American, and
other. Race is stored in most databases dealing with people
for a variety of reasons.

e Age. Age can range from 0 to 124. Age 0 is for babies
less than an year old. Some databases may store birth year
instead of age, e.g., as part of full date of birth. Frequency
counts for age and birth year are exactly the same.

e Admission Month. Admission month has values that range
from January to December.

e Patient died during hospitalization. This attribute in-
dicates whether a patient died during hospitalization.

e Primary Payer. Primary payer has six values: Medicare,
Medicaid, private or health maintenance organization, self-
pay, no charge, and other.

e Length of Stay. Length of stay ranges from 0 to 364 and
represents the number of days a patient spends in a hospital.
It is a very sensitive attribute and reveals information about
other attributes such as the nature of the patient’s disease.

e Mortality Risk. Mortality Risk has four values showing the
likelihood of dying: minor, moderate, major, and extreme. It
indicates the risk of a patient dying in the hospital.

e Disease Severity. Disease Severity has four values showing
loss of function: minor (indicates cases with no comorbidity
or complications), moderate, major, and extreme. It indicates
the severity of the patient’s disease.

e Major Diagnostic Category. Major Diagnostic Category
has 25 values and gives the principal diagnosis such as “Dis-
eases and Disorders of Kidney”, “Burns”, “Human Immunod-
eficiency Virus Infection (HIV)”, etc.

o Admission Type. Admission type has six values: emer-
gency, urgent, elective, newborn, trauma center, and other.

e Admission Source. Admission source has five values: emer-
gency room, another hospital, another facility including long-
term care, court/law enforcement, and routine/birth/other.
It indicates from where the patient was admitted to the hos-
pital.

Figure 1: Attributes/columns used in our evaluation.

tributes are listed in Figure 1. We believe these or similar at-
tributes would be present in most real-world EMR systems.
We confirmed that six of them, including sex, race, age, ad-
mission month, patient died, and primary payer, are used
by OpenEMR [6], which is an open source fully-functional
EMR application. We stress that the form in which these
attributes are stored can vary (e.g., age can be stored as an
integer or computed from a date of birth) but some variant
of these attributes exist in OpenEMR.

To decide whether an attribute should be DTE or OPE-
encrypted we did the following. For the attributes stored
by OpenEMR (in some form), we simply checked the kinds
of operations OpenEMR, supported on it. If it supported
either range queries or sorting operations, we considered it
an OPE attribute. If OpenEMR supported equality queries
on the attribute we considered it a DTE attribute. For the
remaining attributes, we made assumptions which we be-



lieve to be reasonable. More specifically, we assumed an
EMR system would support range queries on the length of
stay attribute; sorting queries on the mortality risk, disease
severity, and admission type attributes (e.g., for triage); and
equality queries on major diagnostic category and admission
source.

7.2 Auxiliary Data

All but one of our attacks (sorting) require an auxiliary
dataset to decrypt a PPE-encrypted column. We used the
following two auxiliary datasets:

Texas PUDF data. The first auxiliary dataset we use is
the Texas Inpatient Public Use Data File (PUDF), which is
provided by the Texas Department of State Health Services.
This dataset—unlike the HCUP /NIS data—is publicly avail-
able online so there is no reason to believe an adversary
would not use it to her advantage. Specifically, we use the
2008 Texas PUDF data. The Texas PUDF data until year
2008 can be downloaded from [4]. Usage of the data requires
an acceptance of a data use agreement but we believe it is
reasonable to assume that an adversary would not comply
with such an agreement.

2004 HCUP/NIS. Unfortunately, the Texas PUDF data
has a limited number of attributes which prevents us from
studying the accuracy of our attacks on several attributes
of interest. We therefore also run experiments using the
2004 HCUP/NIS database as auxiliary data (recall that our
target data is the 2009 HCUP/NIS data). Note that each
year of the HCUP/NIS data comes from a random sample
of hospitals from a large number of U.S. hospitals and the
entire data of each sampled hospital is included. This means
that the 2004 HCUP /NIS data is not only different in time
from the 2009 HCUP/NIS data but it is also comes from a
different set of hospitals. There is a small number of common
hospitals between 2004 and 2009 HCUP/NIS databases (less
than 4%), but that does not have a noticeable impact on our
experimental results.

Remark on additional datasets. Another example of
a publicly-available auxiliary dataset is the Statewide Plan-
ning and Research Cooperative System (SPARCS) Inpatient
data from the state of New York [5]. We do not report re-
sults using SPARCS as auxiliary data due to space limita-
tions, but it gives similar results to those using the Texas
PUDF data.

8. EXPERIMENTAL SETUP

All experiments were conducted on a high-end Mac lap-
top with Intel Core i7 processor and 16GB memory running
OS X Yosemite (v10.10.2). We used Python version 2.7.6
and Matlab version 8.4.0 (R2014b). For our experiments we
developed three tools: Parser, Column Finder, and Revealer
which we now describe.

Parser. Parser is written in Python and parses the tar-
get and auxiliary data to create appropriate histograms. In
the case of the target data, it creates one histogram per at-
tribute/hospital pair. More precisely, for each pair it creates
a histogram that reports the number of times some value v
of the attribute appears in the hospital’s data. In the case
of the auxiliary data, it creates a single histogram for each
attribute (i.e., over all hospitals).
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Column Finder. Column Finder is also written in Python.
Since CryptDB-like EDB systems encrypt column names,
an adversary first needs to learn which encrypted columns
correspond to the attribute of interest. We do this using
the following approach. First, we determine if the attribute
of interest is present in the EDB by checking the database
schema of the application. Then we run Column Finder
which works as follows:

1. it determines the number of distinct values for the column
of interest in the auxiliary data. We’ll refer to this column
as the auxiliary column. As an example, Column Finder
would use the auxiliary data to learn that age has 125
possible values or that sex has 2 possible values.

2. it then determines the number of distinct values stored
in each DTE- and OPE-encrypted column of the EDB.
This is trivial due to the properties of these encryption
schemes. It then searches through these encrypted columns
to find the ones that have approximately the same num-
ber of distinct values as the auxiliary column. We have to
search for approximate matches since some values of an
attribute may not be present in the target data. Since we
know from the database schema of the application that
the EDB contains an encrypted column for the attribute
of interest, this step will find at least one column:

(a) If it finds only one column, then that is the en-
crypted column for the attribute of interest.

(b) If it finds more than one column with a close-enough
number of distinct values such that it cannot deter-
mine which column belongs to the attribute of in-
terest, then it outputs all of them.

Auxiliary At- | Target Attributes Accuracy
tribute
Primary Payer Admission Type, Pri- 116
mary Payer, Race
Race Admission Type, Pri- | 152
mary Payer, Race
Admission Type | Admission Type, Pri- 128
mary Payer, Race
Sex Sex, Patient Died 200
Patient Died Sex, Patient Died 200

Table 2: Column recovery: the accuracy column reports the num-
ber of hospitals for which the correct attribute (i.e., from the
auxiliary attribute column) had the lowest £2-optimization cost
among all target attributes.

Data Revealer. Revealer is written in Matlab and imple-
ments frequency analysis, f2-optimization, and the cumula-
tive attack. The last two attacks use the Hungarian algo-
rithm for the optimization step. We did not implement the
sorting attack against dense columns since correctness and
perfect accuracy is trivially true (we do run experiments to
report the prevalence of dense columns in our target dataset
and results are shown in Figure 4). Revealer takes as in-
put the histogram of an auxiliary column from the output
of Parser and the histograms for a set of target encrypted
columns from the output of Column Finder. So, depending
on the output of Column Finder, Revealer can receive either
a single target histogram or multiple target histograms and
in each case it works as follows:

e if it receives a single target histogram, Revealer simply
runs the attack with its two inputs.



e if it receives multiple target histograms, Revealer runs
one of the optimization-based attacks on the auxiliary
histogram with each of the target histograms. It then
outputs the result with the minimum cost.

Note that only the ¢,-optimization and cumulative attacks
can be executed when there are multiple target histograms
since frequency analysis does not have an inherent notion of
cost that can be used. In our experiments, we found that
when the target and auxiliary attributes are the same, the
cost is significantly less than when they are different. This
is reported in Table 2.

Time measurements. All the attacks take less than a
fraction of a second per hospital. Table 3 reports the running
times (averaged over 200 hospitals) for each attack over a
different set of attributes; each with a different number of
values.

Notice that attacking the length of stay column requires
considerably more time than the rest. This is due to the fact
that it has a large number of values (365) which especially
affects the running time of /3-optimization and cumulative
attacks which rely on optimization. Currently, our attacks
are implemented in Matlab which is very slow compared to
other languages like C so we believe that a C implementa-
tion would decrease the running time by several orders of
magnitude.

Atts. (# of values) Freq. An. | {;-opt. Cumul.
Sex (2) 0.11ms 0.11ms 0.31ms
Mortality Risk (4) 0.12ms 0.12ms 0.49ms
Admission Source (5) 0.12ms 0.13ms 0.60ms
Major Diagnostic Category (25) 0.19ms 0.20ms 3.5ms
Age (125) 0.63ms 3.03ms 311.6ms
Length of stay (365) 1.73ms 68.7ms | 35,910ms

Table 3: Time (in milliseconds) of attacks per hospital.

9. EXPERIMENTAL RESULTS

For each hospital and each column in the EDB, we com-
pute the accuracy of our attack as the number of encrypted
cells for which the recovered plaintext matches the ground
truth, divided by the total number of column cells.

We present the results of these experiments in Figures 3,
2 and 5. Each plot shows the empirical Complementary
Cumulative Distribution Function (CCDF) of our record-
level accuracy across all the hospitals in our target data. For
example, a point at location (z, y) indicates that we correctly
recovered at least x fraction of the records for y fraction of
the hospitals in the target data. The results show that our
attacks recover a substantial fraction of the encrypted DBs
and perform significantly better than random guessing.

9.1 Attacks on DTE-Encrypted Columns

Figure 3 shows the results of our /2-optimization attack
against DTE-encrypted columns using the 2004 HCUP /NIS
dataset as auxiliary. Figure 2 shows results of the same
attack using Texas PUDF dataset as auxiliary.

Using the 2004 HCUP/NIS as auxiliary data (Figure 3),
{2-optimization recovers cells for a significant number of pa-
tients, even for attributes with a large number of distinct
values such as Age and Length of Stay. It recovered Mor-
tality Risk and whether the patient died for 100% of the
patients for 99% and 100% of the hospitals respectively. Tt
also recovered the Disease Severity for 100% of the patients
for 51% of the hospitals. The attack recovered Race for at
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least 60% of the patients for at least 69.5% of the hospitals;
Major Diagnostic Category for at least 40% of the patients
for 27.5% of the hospitals; Primary Payer for at least 90%
of the patients for 37.5% of the hospitals; Admission Source
for at least 90% of the patients for 38% of the hospitals;
Admission Type for at least 60% of the patients for 65% of
the hospitals.

Perhaps surprisingly, ¢>-optimization also recovered a rel-
atively small but significant fraction of cells for the Age at-
tribute. Recovering DTE-encrypted Ages is very difficult
because Age takes on a large range of values, and multiple
values have very similar frequencies. Nonetheless, it recov-
ered Age for at least 10% of patients for 84.5% of the hos-
pitals. The attack also works surprisingly well for Length of
Stay despite its large range of 365 possible values: specifi-
cally, it recovers this attribute for at least 83% of the patients
for 50% of the hospitals. The reason for this unexpected ac-
curacy is that most patients stay in the hospital for only a
few days. Therefore, by decrypting the plaintexts for a few
very common lengths of stay (e.g., 1,2,3,...), we recover a
large fraction of the database.

Using the Texas PUDF data as auxiliary (Figure 2), the
attack performs similarly well. There is a small decrease
in accuracy for Race and Major Diagnostic Category. We
believe this is due to regional differences in demographics
across the U.S.
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Figure 2: Results of £2-optimization on DTE-encrypted columns
on 200 largest hospitals with 2009 HCUP/NIS as target data and
Texas PUDF as auxiliary data

9.2 Attacks on OPE-Encrypted Columns

The sorting attack succeeds only if a column has density 1,
meaning that all possible values of an attribute are present
in both the target and the auxiliary data. If this condition
holds, the sorting attack can recover all the OPE-encrypted
cells in a column; otherwise it fails. Figure 4 shows the
density for six selected attributes for the large and small 200
hospitals, respectively, of the 2009 HCUP/NIS dataset. For
large hospitals, the density is 1 for 100% of the hospitals for
Disease Severity and Mortality Risk and 90% of the hospitals
for Admission Month. For small hospitals, the density is 1
for 95% of the hospitals for Disease Severity, Mortality Risk,
and Admission Month. It follows that the sorting attack
would recover 100% of the cells for these columns for these
hospitals.

To evaluate the cumulative attack, we executed it over
both large and small hospitals since the latter tend to have
lower density on many attributes. Figure 5 shows the re-
sults. For large hospitals (Figure 5a) the attack performed
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Figure 3: Results of £2-optimization on DTE-encrypted columns on 200 largest hospitals with 2009 HCUP/NIS as target data and 2004
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Figure 5: Results of Cumulative attack on OPE-encrypted columns

extremely well, even for low-density attributes. It recovered
at least 80% of the patient records for 95% of the hospitals
for all the attributes shown in Figure 5a. The attack recov-
ered Admission Month, Disease Severity, and Mortality Risk
for 100% of the patients for 100% of the hospitals; Length
of Stay for at least 99.77% of the patients for 100% of the
hospitals; Age for at least 99% of the patients for 82.5% of
the hospitals ; and Admission Type for 100% of the patients
for 78.5% of the hospitals.

For small hospitals (Figure 5b), despite the attributes’

low densities, the attack still performed surprisingly well. It
recovered Disease Severity and Mortality Risk for 100% of
the patients for 100% of the hospitals; Admission Month for
100% of the patients for 99.5% of the hospitals; Length of
Stay for at least 95% of the patients for 98% of the hospitals;
Age for at least 95% of the patients for 78% of the hospitals;
and Admission Type for 100% of the patients for 69.5% of
the hospitals.

654



10. CONCLUSION

We study the concrete security of PPE-based encrypted
database systems such as CryptDB and Cipherbase in a real-
world scenario. We consider four different attacks and ex-
perimentally demonstrate that they can decrypt a large frac-
tion of cells from DTE- and OPE-encrypted columns. We
specifically show this for the case of EMR databases but we
believe that the attacks would be as successful on a wide
variety of databases as long as appropriate auxiliary infor-
mation is available.
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